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Abstract— We present a formulation of non-parabolic macro-
scopic transport models which avoids the commonly used re-
laxation time approximation by using an expansion of the
scattering integral into the odd moments of the distribution
function. The parameters of this expansion and the other closure
relations are directly calculated via analytical models of the
distribution function. We compare models of order four and six
to demonstrate the substantially improved accuracy of the six
moments description over the conventional four moments energy-
transport formalism.

I. INTRODUCTION

Macroscopic transport models based on Boltzmann’s trans-
port equation (BTE) are of fundamental importance for the
modeling of semiconductor devices. These models are derived
from the BTE by applying the method of moments which
transforms the BTE into an infinite set of equations. To obtain
a tractable equation set, this hierarchy has to be truncated
after N equations. Since the highest order equation contains
the (N + 1)th moment, a closure relation has to be invoked
which basically models the (N + 1)th moment by the N
lower order moments. This is a critical step which determines
the accuracy of the model. Another crucial step is the mod-
eling of the mobilities, commonly done by employing the
macroscopic relaxation time approximation. In the relaxation
time approximation the mobilities are normally expressed as
a function of the average carrier energy or temperature. A
rigorous treatment reveals, however, that the mobilities depend
on the fluxes such as the carrier current and the energy flux
and therefore on the odd moments of the distribution function
[1], [2]. By assuming that the ratio of the fluxes approximately
behaves like the ratio observed under homogeneous conditions
this flux dependence is commonly transformed into an energy
dependence. This can impair the quality of the model and we
present a different formulation which avoids this assumption.
Finally, when non-parabolic dispersion relations are used,
additional factors appear in front of the streaming terms in
the flux relations [3].

All three issues can be rigorously dealt with by using an
analytical description of the distribution function. Obviously,
the quality of this distribution function model has a strong
impact on the quality of the transport model. We compare
the six moments description presented in [4] with a standard
model based on a heated Maxwell distribution.

II. BAND STRUCTURE MODEL

In the following we will shortly outline the derivation of
our model. We use a single equivalent isotropic non-parabolic
band, and Kane’s dispersion relation
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for the group velocity. The non-parabolicity correction func-
tions Hx are defined to equal unity for parabolic bands
(x = E , g, u). We are aware that Kane’s relation is only
roughly valid for energies smaller 2 eV [5]. However, not even
this first-order approximation to the real non-parabolic band
structure allows a simple analytical treatment. For the sake
of demonstrating the basic correction terms that appear in the
flux relations as a result of non-parabolicity this approximation
is sufficient. To obtain closed form solutions in the final
coefficients of the transport equations the non-parabolicity
functions Hx will be grouped together for each moment and
approximated by a fit expression of the form

Hy(E) ≈ 1 + γy(αE)λy , (4)

similar to the procedure followed in [4]. Note that (4) is written
in a form that preserves the non-parabolicity factor α in the
final result.

III. THE DIFFUSION APPROXIMATION

In the following we will restrict our discussion to the
diffusion dominated regime, formally introduced by the dif-
fusion approximation of the BTE. This assumption basically
eliminates the convective terms appearing in hydrodynamic
models and thus provides the transition to the energy-transport
models which are commonly used in device simulators [3].

We start with the scaled form of the BTE [6] and split
the distribution function into its symmetric and anti-symmetric
parts as f(k) = fS(k) + κfA(k). The scaling parameter of
the BTE is the Knudsen number κ which represents the mean
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Fig. 1. Comparison of the moments Qi (left) and the relaxation times τi (right) with Monte Carlo data. The Monte Carlo data is given by the symbols,
the results based on the analytical distribution function model with N = 6 by the solid lines, and the heated Maxwellian distribution (HM) with N = 4 is
represented by the other line styles.

free path relative to the device dimension [6]. In the diffusion
approximation [6] it is assumed that κ is small, and all terms
of order O(κ2) are neglected. We obtain

∂tfS +u · ∇rfA + F · ∇pfA =
1

κ2
QS[fS] (5)

u · ∇rfS + F · ∇pfS = QA[fA] . (6)

In addition, a relationship between the symmetric and anti-
symmetric part can be derived when it is assumed that f(k)
is obtained by displacing a symmetric function fS(k) by κkc.
Under the assumption that fS(k) is isotropic and thus depends
only on the modulus of k, and that κ is small we expand the
distribution function

f(k) = fS(k − κkc) ≈ fS(k) −∇kf(k) · κkc . (7)

All terms of order O(κ2) are neglected, consistently with
the diffusion approximation. The displacement of the anti-
symmetric part κkc is now assumed to depend only on the
carrier energy as kc = kc(E). The anti-symmetric part is thus
obtained as

fA(k) = −∇kfS(k) · kc(E) = −∂EfS(E) h̄u · kc(E) . (8)

We now assume that the symmetric part fulfills the ordinary
differential equation

∂EfS(E) = −fS(E)Hf (E) . (9)

The solutions of (9) include the Maxwellian distribution with
Hf = 1/(kBT ). With (9) and (3) the anti-symmetric part can
be written as fA(k) = B(E) · k fS(E) where the vector B(E)
is expanded in powers of the energy to finally give

fA(k) =
M
∑

j=0

EjBj · k fS(E) . (10)

Note that this definition implicitly defines kc(E). M denotes
the number of fluxes and the number of even moments and
equals N/2 − 1, where N is the order of the moments
expansion. In the following we will use a heated Maxwellian
distribution for N = 4 and the six moments description from
[4] for N = 6.

IV. TRANSPORT MODEL

The macroscopic transport equations are obtained by mul-
tiplying the BTE with the weight functions E i and pE i and
integrating the product over k space. As solution variables of
the final equation system we use wi = 〈E i〉 and Vi = 〈uE i〉.

A. Moments of the Scattering Integral

We assume a linear scattering operator and consider phonon
and impurity scattering based on the Golden Rule [5]. The
moments of the scattering integral are calculated with the
analytic distribution function model using the same standard
scattering rates as in Monte Carlo calculations to obtain [9]

Qi = −
〈 pE i

τp(E)

〉

=
M
∑

j=0

ZijVj , (11)

qi = −
〈 E i

τEi(E)

〉

= − wi − wi,eq

τi(w1, . . . , wM )
, (12)

where the coefficients Zij depend only on the even moments
wl. Note that each moment of the scattering integral Qi

depends on all fluxes Vj [1], [2]. The relaxation times τ1 and
τ2 are the energy relaxation time and the kurtosis relaxation
time, respectively [8].

A comparison of (11) to Monte Carlo results based on the
same band structure and scattering models is shown in Fig. 1.
As an example device we use a one-dimensional cut through
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Fig. 2. Left: Comparison of the non-parabolicity factors Hi from Monte Carlo simulations (symbols) with the results obtained from the six moments model
N = 6 (solid lines) Right: Comparison with the results obtained from the heated Maxwellian distribution N = 4 (solid lines). Also shown is H∗

1
taken from

[7].

the potential resulting from an energy-transport solution of the
90 nm well-tempered MOS [10] at VD = VG = 1 V. Inside
the channel the heated Maxwellian approximation (N = 4)
delivers fairly accurate results as long as w1 < 0.25 eV. For
higher energies the scattering rates are overestimated. Inside
the drain region, the heated Maxwellian approximation fails
completely. The six moments description (N = 6) delivers
highly accurate results throughout the whole device. Similarly,
the hysteresis in the relaxation times is only reproduced by the
six moments description.

B. Balance Equations

The balance equations of the six moments transport model
are obtained by applying the weight function E i and take the
following general form

∂tnwi + ∇r · nVi − iF · nVi−1 = −n
wi − wi,eq

τi

. (13)

Note that due to the choice of solution variables the balance
equations are independent of the band structure model.

C. Flux Equations

By taking the moments of the BTE with the weight func-
tions pE i we obtain general flux equations of the form Ψi =
Qi. The fluxes Ψi are given as

Ψi = −Ûi+1 ∇ log
1

n
+ ∇Ûi+1 − F(wi Î + iÛi) , (14)

with the tensors Ûi = 〈u ⊗ p E i−1〉. These tensors introduce
the convective terms into hydrodynamic models [3] because
they depend on the fluxes Vi. In the diffusions approximation,
however, the tensors Ûi reduce to scalars Ûi ≈ UiÎ which are
calculated as follows

Ui = 2
3
〈E i HU(E)〉 .

= 2
3
〈E i〉Hi . (15)

The parameters of the analytic distribution functions are deter-
mined in such a way that the moments wi are exactly repro-
duced for i ≤ M [4]. Consequently, the highest order moment
wM+1 appearing in the flux equations is thus extrapolated
and provides the closure of the equation system. In the same
way, the coefficients Hi are interpolated via the distribution
function for i ≤ M and extrapolated for HM+1. The non-
parabolicity corrections to the streaming terms, Hi, depend
only on the even moments wj and are shown in Fig. 2. Clearly,
only the six moments representation correctly reproduces the
hysteresis. In the extrapolated closure conditions for wM+1 a
maximum error less than 10% is obtained with six moments
model compared to an error of 150% to the case of a heated
Maxwellian distribution.

Conventionally, inverse mobility tensors µ̂−1
i are introduced

[3] to model Qi analogously to the drift-diffusion model as

Qi =

M
∑

j=0

ZijVj
.
= q µ̂−1

i Vi . (16)

Then it is assumed that Qi and 〈uE i〉 are co-linear, that is,
that the mobility tensor can be approximated by a scalar to
obtain the mobility as

µ∗

i = q
[ Vi

|Vi|2
·

M
∑

j=0

ZijVj

]−1

. (17)

The classic example of this type is the original form of
the Hänsch mobility model [1]. Note that by this measure
the implicit flux relations which are thought to represent Vi

become artificially non-linear in Vi. In addition, this flux-
dependence is awkward to handle [11], particularly in two-
and three-dimensional implementations. Therefore the ratio of
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the fluxes is commonly replaced by bulk relations as

Rij(w1) =
Vi · Vj

|Vi|2
∣

∣

∣

Bulk
, (18)

which can be given as a function of the average carrier energy
w1. Due to this simplification the model looses some of
its accuracy because the mobility is actually a functional of
the distribution function which is not accurately represented
by the average carrier energy alone [12], [13]. Since the
scattering matrix Ẑ is conventionally modeled as a function of
the average energy, this procedure results in a purely energy
dependent mobility model of the form

µ∗

i (w1) = q
[

M
∑

j=0

Rij(w1)Zij(w1)
]−1

. (19)

Note that in the most commonly used mobility model, the
Hänsch model, the coefficients Z00 and Z01 are obtained by
consistently reproducing measured bulk mobility values. Since
this procedure is only possible for the carrier mobility µ∗

0, the
energy flux mobility is commonly assumed to be of the form
µ∗

1 = r µ∗
0 with r being a constant ratio in the range [0.8, 1],

which is a rather crude approximation [3].
Another interesting consequence, which makes this ap-

proach questionable for higher-order transport models, can be
noted when inspecting the flux relations (14) for the lowest
order flux V0. The quantity V0 is the average carrier velocity
which is directly proportional to the carrier current, the most
important quantity. Since H1 is normally modeled as either
constant (e.g., H1 = 1 for parabolic bands) or as energy
dependent H1(w1) [7], the electrical current depends only on
w1 and not on the higher order moments of the distribution
function, which seams unreasonable.

In summary, the above outlined procedure, which is almost
exclusively used in commercially available simulators, has sev-
eral shortcomings. We therefore propose a different approach:
By inverting the implicit flux relations Ψi = Qi(V0, . . . ,VM )
we obtain explicit relations for the fluxes

Vi = µi

F

q
+ Dn

i ∇ log
1

n
−

M
∑

j=0

Yij∇Uj+1 (20)

µi = −q

M
∑

j=0

Yij (wj + jUj) (21)

Dn
i = −

M
∑

j=0

Yij Uj+1 (22)

where the coefficients Yij are the components of the inverted
matrix Ẑ−1 which are determined by the scattering models
and depend only on the even moments wl.

Formulation (20) has many interesting properties. First, the
mobilities µi depend only on the even moments rather than
on the fluxes. In addition, the fact that the mobilities are
functions of the distribution function is well reproduced since
the mobilities µi depend on all available even moments wj

rather than on w1 alone. Second, as a result, the flux relations

are linear in Vi as they should be. Furthermore, all fluxes
depend on all even moments, most notably on the closure
relation for wM+1. Note that this is not the case with models
based on the relaxation time approximation where the tensor
Ẑ is of diagonal form and thus only the highest order equation
for the flux VM depends directly on the closure relation.

V. CONCLUSION

We present a derivation of non-parabolic macroscopic trans-
port models from Boltzmann’s equation. The closure relations
are derived from analytical distribution function models, most
notably a six moments description. Instead of applying the
relaxation time approximation we reformulate the moments of
the scattering integral in terms of the fluxes of the equation
system. Thereby we avoid the awkward flux dependencies oc-
curring in the mobilities and thus the non-linearities resulting
therefrom. As a result, all fluxes occurring in the final equation
system depend on all even moments and in particular on the
closure relation. We show that in contrast to standard energy-
transport models, which are based on a heated Maxwellian
distribution function, a six moments description accurately
models all closure relations. We therefore believe that this
six moments model is a good choice for modeling hot-carrier
effects in highly downscaled semiconductor devices.
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