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I. Introduction
To overcome some of the limitations of the classic drift-diffusion model [1], higher-order transport
models have been proposed, including the energy-balance model [2], the hydrodynamic model [3]
and a six moments model [4]. A vast number of these models exists and there is a considerable
amount of confusion as to their relation to each other. The main differences between these models
can be pinned down to the assumptions used for the closure relations.

II. Macroscopic Transport Models
Transport equations used in semiconductor device simulation are normally derived from Boltz-
mann’s transport equation (BTE), a semiclassical kinetic equation, which reads for electrons

∂f

∂t
+ u · ∇rf +

F

h̄
· ∇kf = Q[f ] .

Here, f(k, r, t) is the carrier distribution function, Q[f ] the scattering operator, u the group ve-
locity, and F the external force, for instance F(r) = −qE(r) for homogeneous band structures
and neglected magnetic fields. The BTE represents an integro-differential equation in the seven-
dimensional space (k, r, t). To solve this equation numerically by discretization of the differential
and integral operators is computationally very expensive. Widely used numerical methods for solv-
ing the BTE are the Monte Carlo method [5] and the spherical harmonics expansion method [6].
Both have been proven to give accurate results but are still computationally expensive.

A common simplification which will be the subject of this paper, is to investigate only some mo-
ments of the distribution function which are obtained by multiplying the distribution function with
suitable weight functions φ = φ(k) and integrating over k-space as n〈φ〉 =

∫
φf d3k, with n

being the carrier concentration. The equations which determine a given set of moments form a
macroscopic transport model. Conventionally, the moment equations resulting from the weight
functions pE i (p = h̄k) give the flux relations whereas the weight functions E i (E is the energy)
deliver the balance equations as

φ = 1 ⇒ ∂tn + ∇ · nV0 = 0

φ = p ⇒ ∂tnP0 + ∇ · nÛ1 − nF = nQ0

φ = E ⇒ ∂tnw1 + ∇ · nV1 − 1 nF · V0 = nq1

φ = pE ⇒ ∂tnP1 + ∇ · nÛ2 − nF · (w1 Î + Û1) = nQ1

φ = E2 ⇒ ∂tnw2 + ∇ · nV2 − 2 nF · V1 = nq2

φ = pE2 ⇒ ∂tnP2 + ∇ · nÛ3 − nF · (w2 Î + 2 Û2) = nQ2...
...

with Pi = 〈pE i〉, Vi = 〈uE i〉, wi = 〈E i〉, Ûi = 〈E i−1u ⊗ p〉, and the moments of the scattering
integral nqi =

∫
E i Q[f(k)] d3k and nQi =

∫
pE i Q[f(k)] d3k. This equation system contains

more unknowns than equations and each equation is coupled to the next higher equation. To obtain a
tractable equation set, this hierarchy has to be truncated after N equations. Since the current density
is proportional to the average velocity V0 and many physical processes are modeled as a function of
the average energy w1, it is sensible to use the quantities Vi and wi as solution variables. Now the
additional moments Pi, Ûi, qi, and Qi have to be expressed as functions of the solution variables,
which is not exactly possible and known as closure problem.
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III. Closure Relations
For parabolic energy bands we obtain Pi = mVi, with m being the effective mass. If we fur-
ther assume that the distribution function can be reasonably described by a displaced and heated
Maxwellian distribution, simple relationships can be derived for the energy-like tensors, for in-
stance Û1 = 2

3
w1Î − mV2

0 /3 + mV0 ⊗ V0. However, even the simplest model of this type, the
hydrodynamic model [3], is extremely difficult to solve for multidimensional devices due to the ex-
istence of hyperbolic modes. Thus, claiming that the system is diffusion dominated, the convective
terms and the time derivatives in the flux relations are commonly neglected, resulting in parabolic
partial differential equation systems [7] which are simpler to solve.

In the diffusion limit the energy-like tensors then evaluate to Ûi = 2
3
wi Hi, where Hi considers the

influence of a non-parabolic band structure on the streaming terms (Hi = 1 for parabolic bands). Hi

has been modeled as energy-dependent via a simple analytical expression [8] or by the incorporation
of bulk Monte Carlo data [9]. Since it has been found that Hi is not a single-valued function of
w1, a more complex model has been proposed in [10] based on a six moments description. Since
the equation system is truncated after N equations, the highest-order solution variable is wN/2−1.
However, in the highest-order equation the moment ÛN/2 appears which has to be expressed as
a function of the available moments. Conventionally, a heated Maxwellian distribution is used to
derive such a relation [2, 3, 9] which is rather crude and better results have been obtained by a six
moments description [10].

The closure relations for the even moments of the scattering integral qi are in general not considered
to be too critical. Conventionally, relaxation times of the form τi = −(wi−wi,eq)/qi are introduced,
with wi,eq being the equilibrium value of wi. The relaxation times are then modeled as either
constant or energy-dependent [7]. The closure relations for Qi, on the other hand, are extremely
critical. Rather simple expressions are obtained by introducing mobilities µi in analogy to the drift-
diffusion model to express Qi as Qi = −qVi/µi, where µi depends only on the average energy wi.
A rigorous treatment reveals, however, that these odd moments of the scattering integral Qi depend
on the odd moments of the distribution function [11, 12] as Qi =

∑N/2−1

j=0 ZijVj . This closure
relation causes additional coupling between the equations [10].

IV. Conclusions
Despite the fact that higher-order transport models have been around for more than forty years and
that they are commonly acknowledged as being a necessary extension of the classic drift-diffusion
model, a considerable amount of uncertainty still prevails over how to properly close the equation
system. Particularly critical seem to be the facts that in any practical implementation the con-
vective terms in the energy-like tensors are neglected, that the equation system is closed with a
heated Maxwellian distribution, and that the odd moments of the scattering integral are expressed
via energy-dependent mobilities. Each of these assumptions can introduce considerable errors.
Nevertheless, astonishingly accurate results have been reported with hydrodynamic models down to
gate-lengths of 20 nm [13].
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[11] W. Hänsch, The Drift Diffusion Equation and its Application in MOSFET Modeling (Springer, Wien, 1991).
[12] A. M. Anile and O. Muscato, Physical Review B 51, 16728 (1995).
[13] T. Tanaka et al., in Proc. SISPAD (Boston, USA, 2003), pp. 183–186.

505


