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Abstract

In this paper a new numerical model for the three-
dimensional simulation of thermal oxidation of silicon is
presented. The model takes into account that the diffu-
sion of oxidants, the chemical reaction, and the volume in-
crease occur simultaneously in a so-called reactive layer.
This reactive layer has a spatial finite width, in contrast
to the sharp interface between silicon and silicon dioxide
in the convential formulation. The oxidation process is
numerically described with a coupled system of equations
for reaction, diffusion, and displacement. In order to solve
the numerical formulation of the oxidation process the fi-
nite element scheme is applied.

1. Introduction

If a surface of a silicon body has contact with an oxidizing
atmosphere, the chemical reaction of the oxidant (oxygen
or steam) with silicon forms silicon dioxide. The parts
of silicon which should not be oxidized are masked by a
layer of silicon nitride.

If a silicon dioxide domain is already existing, the oxi-
dants diffuse through the oxide domain and react at the
interface of oxide and silicon to form new oxide so that the
oxide domain is penetrated. This reaction consumes sili-
con and the newly formed silicon dioxide has more than
twice the volume of the original silicon.

Thermal oxidation is a complex process where the three
subprocesses oxidant diffusion, chemical reaction, and
volume increase occur simultaneously. The volume in-
crease is the main source of mechanical stress and strain,
and these cause displacement [1].

From the mathematical point of view the problem can be
described by a coupled system of partial differential equa-
tions, one for the diffusion of the oxidant through the ox-
ide, the second for the conversion of silicon into silicon
dioxide at the interface, and a third for the mechanical
problem of the Si—SiO5 — SigNiy —body.

Novel in our model is that all subprocesses are coupled
simultaneously and the oxidation process is simulated in
three dimensions. Earlier oxidation models decouple them
into a sequence of quasi-stationary steps.

We will restrict the following explanation to the most sim-
ple physical model of linear oxidant diffusion and linear
elastic displacement of the Si—SiO5 —SizNiy —body.

2. Modd
Analogously to [2] we use a normalized silicon concen-
tration
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where C; (%, t) is the silicon concentration at time t and
point & (x, y, z) and Cyg; is the concentration in pure sili-
con. Sonis1in puresiliconand 0 in pure silicon dioxide.
The oxidant diffusion is described by

DAC(Z,t) = k(n)C(%,1). @)

Here D is the diffusion coefficient and &(n) is the strength
of a spatial sink and not just a reaction coefficient at a
sharp interface like in the standard model [3].k(n)C(Z, t)
defines how many particles of oxygen per unit volume re-
act in a unit time interval to silicon dioxide.
The change of ) is described by
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where ) is the volume expansion factor (=2.25) for the
reaction from Si to SiO5 and V; is the number of oxidant
molecules incorporated into one unit volume of SiOs.
We define in (4) that k(n) is linearly proportional to 7

k= 77(57 t)kmax- (4)

The chemical reaction of silicon and oxygen causes a vol-
ume increase. The normalized additional volume, where
we assume that the oxidant concentration C' is constant, is

yedd — %At k(n)C(Z,t)/Ny. (5)

We assume that the Si—SiO2 —body deforms elastically.
In the theory of linear elasticity with small displacements

0(z,y, 2) = {u(z,y, 2) v(z,y, 2) w(x,y, 2)} and strains
eij (4, j stands for X, y or z), the strain tensor € is

E=Lpl (6)
where { is the displacement vector and L, is a differential

operator, so that e.9. e,, = 2% and e, = %(3—5 + 4y,

Assuming a linear material, the stress tensor & Is given by

o =D¢ (7
where D is a (6x6) material matrix of elastic coefficients

which are linear functions of Young’s Modulus E and
Poisson’s ratio p of the materials.
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The most important part is that the volume expansion
causes displacement. The normalized additional volume
from (5) can be written as
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For an isotropic material the strain components are equal
so that
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With (6) and (9) the relationship between the volume ex-
pansion and the displacement is fully determined.

Ex =Ey =&

3. Discretization

3.1. Weak Formulation

Before we start with the discretization we consider the
weak formulation on (2) and (3). After using the Galerkin
method with linear test functions N () on the diffusion
equation (2) and applying Green’s theorem we obtain

Emaz /nCNk dv = —D/VC VN dV (10)
14
The application of the Galerkin method with the same lin-
ear test functions Ny (&) to the distribution function from
(3) leads to

/andeV_k:mm/nCdeV. (11)
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3.2. Oxidant Diffusion

In order to solve (2) and (3) on a three-dimensional do-
main with the volume V;,p4., We split the domain up into
tetrahedral elements with the volume V' and perform a fi-
nite element discretization. The spatial discretization for
C(Z) and n(Z) on a single tetrahedral element is

Z (tn )N
Zn(t )N

where cgt") is the oxidant concentration and nft”) is the
normalized silicon concentration at node ¢ and discrete
time t,,. N;(Z) is the linear form function on node i.

If we replace C(Z, t) and n(Z, t) in (10) with (12) and (13)
we obtain

(Z,t =ty (12)

(&t =t,) (13)
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With the following substitution

=/mme
1%

(14)
Nk) dv

dv (15)

384

)V

K = / Y Nu() VN (7
1%

(14) is simplified to

(16)
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which is a non-linear equation system (k is the equation
index) with the constants D, Ky;, kpqe and My; and with
the unknown variables c(t ") and ngt”) for one element.

3.3. Changeof n

The spatial discretization for C'(&) and n(Z) on (3) is the
same like in the last subsection and is already described
by (12) and (13). The time discretization of % is per-
formed with the simple Backward-Euler method as

8n(fat = tn) n(fa tn) - n(fa tnfl)
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where t,, and t,,_1 are two successive discrete times.
If we replace C(Z,t), n(Z,t) and % in (11) with the
discrete expressions (12), (13) and (18), we obtain
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With the substitution (16) the last equation is simplified to
a non-linear equations system (k is the equation index)
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with the unknown variables c ) and 77 ) and with the

constants My, kqz and 1 for one finite element. The

values for 17( 1) are already determined at the previous
time step.

3.4. Mechanics

The finite element discretization for a mechnical system
has been already often described, e.g. by [4]. Because of
this fact we will restrict this subsection only to some steps
which are important for the oxidation simulation.
After discretization of the continuum, the relationship be-
tween strain and displacement (6) can be written as

¢ — Bd* = [B;, Bj, Bm, Bp| d° (21)
in which ¢ is the strain tensor, d¢ is the displacement vec-
tor (12x1) and B; is the (3x3) submatrix for the node i.
The entire inner virtual work on a finite element is

Winner = /{ge}T
1%

(22)



in which the transposed strain tensor is

T
(e =g BT (23)
and the stress tensor (7) can be written as
o =D& =DBd". (24)
That leads to the following equation for W, e
T —
Winner =d° /BTDB dedv . (25)
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The outer virtual work on a finite element, caused by the
node forces is

Wouter = d_éTf_é- (26)

On an element the inner work must be equal to the outer
work, that leads to

-T - T -
de / BTDBdcdV =de fe (27)
14
With the substitution
K¢ = / BTDBJV (28)
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where K¢ is the so-called stiffnes matrix, we obtain a lin-
ear equation system for the mechanical problem
K® de = fe. (29)
The most important part is, how the volume increase (5),
caused by the chemical reaction of silicon to silicon diox-
ide, loads the displacement problem.
Due to (9) we obtain the components e, 7 and e, for the
strain tensor £¢ and with
fe=-BfDe v (30)
the relationship between the volume expansion and the
node forces is given, and with (29) and (30) the displace-
ments on the nodes is fully determined.

By coupling (17), (20), and (29) a local equation system
for one finite element is given, which is a complete nu-
merical formulation of the oxidation process at any time.

4. Simulation Procedure

In the first step of the simulation procedure, we perform
a finite element discretization. With this aim in view
we split up the Si—SiO5 —body into tetrahedral elements.
The size of the tetrahedrons and, as a result of that, the
number of finite elements can be influenced by the mesh-
ing module.

In the next step we set the initial values for the oxidant
concentration C' and the normalized silicon concentration
7 on the grid nodes. For example n must be 1 in a pure
silicon domain.
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As shown in Fig. 1, we iterate over all finite elements and
build the local equation system for one element for every
actual discrete time. The local system describes the oxi-
dation process numerically for one element.

In order to describe the global oxidation process we need
a global coupled equation system. The components of
the global equation system are assembled from the local
equation system by using the superpostition principle. In
our case "global” has a spatial meaning and stands for the
whole discretized domain.

Start simulation

‘ Create a tetrahedral grid ‘

|

‘ Initialize the grid values for C and ‘

|

| setactual simulation time=0 |

‘ time = time + timestep ‘

Make the local equation system for
one finite element

|

Assemble the components form the
local to the global equation system

|

‘ Solve the global equation system ‘

!

Update the values for C, n and
displacement on the grid nodes

Yes

End simulation

Figure 1. Simulation procedure

After the iteration over all elements is finished, the global
assembled equation system is also completed. Now the
global non-linear equation system can be solved and we
obtain the results for the C, n and displacement values
for the global discretized oxdidation process for the actual
time step.

With these results we update the values for C, n and dis-
placement on the grid nodes and so these values are al-
ways kept pace with the actual simulation time.

When the above described procedure is finished, we in-
crease the actual simulation time and start with the assem-
bling loop again. The same assembling and solving pro-
cedure is repeated for each time step until the desired end
of the simulation.



5. A Demonstrative Example

As example a Si—SizNiy —body as shown in Fig. 2 is ox-
idized. In this example only the upper surface of the Si—
SizNis —body has contact with the oxidizing atmosphere.
The upper layer is a silicon nitride mask that prevent the
oxidant diffusion on the subjacent silicon layer.

For the simulation the following parameters were chosen:

C*=3. 107 [part.], D =0.08 [#mz], kmax =40 [é]

pm3 3
As shown in Figs. 2—4 the bottom surface is fixed, the
lateral surfaces can only move vertically and on the upper
surface a free mechanical boundary condition is applied.
In the Figs. 2—4 the angel of view is always the same and
the proportions of the body geometry are also right, so that
the displacement effects caused by the volume increase
can be observed correctly.
The color in the silicon layer shows the value of the nor-
malized silicon concentration. This means that blue is
pure silicon dioxide and red is pure silicon and the other
colors are the reaction layer.

Figure 3. Deformation and silicon dioxide distribution
(blue region) at some time t;.

Figure 2. Initial Si—Si3Nis —body before oxidation.

6. Conclusion

A three-dimensional oxidation model which is based on
the finite element technique has been proposed. In this
model it is assumed that the interface beween silicon and
oxide is a reaction layer with finite width instead of a sharp
interface. In this layer there is a mixture of the three com-
ponents silicon, oxidants, and oxide.

The numerical formulation of the complete physical oxi-
dation process, consisting of a coupled differential equa-
tion system, takes into account that the oxidant diffusion,
the chemical reaction, and the volume increase occur si-
multaneously. So this model enables a realistic and accu-
rate simulation of the whole oxidation process.

As demonstrated on a numerical example, this model is a
powerful tool to simulate the whole oxidation process on
three-dimensional semiconductor structures.

386

Figure 4. Deformation and silicon dioxide distribution
(blue region) at time 2 % t;.
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