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Abstract— The Wigner equation and non-equilibrium Green’s
functions are two formalisms widely used in quantum device
simulation. The Wigner equation, commonly solved by finite
difference methods, is solved in this work by a recently developed
Monte Carlo method. This method resolves both quantum
interference and dissipation effects due to scattering with equal
accuracy. Both limits, namely the pure quantum ballistic case
and the scattering-dominated classical case are treated properly.
A comparison of the Wigner MC solver and NEMO-1D is
presented. Resonant tunneling diodes from the literature are
chosen as benchmark devices. Current/voltage characteristics are
compared for different temperatures and the effect of scattering
on the current and the charge distribution is shown. Practical
device simulation limitations of the Wigner MC method are
discussed. Provided that numerical parameters of the Wigner
MC method such as the coherence length and the grid size
are chosen properly, results are obtained in good quantitative
agreement with NEMO-1D.

I. INTRODUCTION

At room temperature the electrical characteristics of nano-
electronic and highly down-scaled microelectronic devices are
influenced simultaneously by classical and quantum transport
effects. Physical models capable of describing this mixed
transport regime are given by the non-equilibrium Green’s
function (NEGF) formalism and the Wigner transport equa-
tion.

Based on the NEGF formalism, NEMO-1D [1] has served
as a quantitatively predictive design and analysis tool for
resonant tunneling diodes (RTDs). Such devices have been
studied at room temperature including the dominant effects of
band-structure [2] and at low temperatures including dominant
scattering effects[1][3].

On the other hand, the Monte Carlo (MC) method is
nowadays a well established, reliable and accurate numerical
method for solving the Boltzmann equation. Because of the
similarity of the Boltzmann equation and the Wigner equation
it appears very promising to develop a MC method also for the
solution of the latter equation. A particle-based method has the
advantage that scattering processes can be included straight-
forwardly. MC approaches to solve the Wigner equation have
been reported recently [4][5][6][7]. The major problem to
overcome is that the Wigner potential does not represent a
positive definite function. This so-called negative sign problem
generally calls for the introduction of particles of negative
statistical weight. A consequence of the negative sign problem

is that even for a system of non-interacting particles the MC
method has to include inter-particle interactions, allowing a
transfer of, for example, the negative weight of one particle
to the positive weight of another particle in order to achieve
weight cancellation. Otherwise, if such a mechanism is not
included, the MC method can be shown to be instable [7].
The particle weights of either sign grow exponentially at a
very high rate, and because of the large degree of cancellation
in the estimators the variance would also grow exponentially.

II. THE PARTICLE MODEL

The space-dependent Wigner equation for electrons includ-
ing the Boltzmann collision operator Q[fw] reads

(
∂

∂t
+ v · ∇r + qE · ∇k

)

fw = Q[fw] + Θw[fw] . (1)

The classical force term qE is separated from the Wigner
potential,

Vw(r,k)=

∫
ds

2πih̄
e−ik·s

(
V (r + s

2
) − V (r − s

2
) + qs ·E

)

and thus appears on the left hand side of (1) [5]. Because
the Wigner potential assumes positive and negative values, it
cannot directly be used as a probability density. However, the
antisymmetry of Vw with respect to k allows the potential
operator to be expressed solely in terms of the truncated
Wigner potential [7], V +

w (k) = Max(0, Vw(k)), which is
positive definite and thus amenable to a probabilistic inter-
pretation. Expressing the Liouville operator in (1) as a total
time derivative and writing the operators on the right hand
side explicitly gives

[
dfw

dt
+ (λ + α)

︸ ︷︷ ︸

out-scatt.

fw

]

(k, r, t) =

∫

fw(k′, r, t) [S(k′,k) + α δ(k′
− k)]

︸ ︷︷ ︸

in-scatt.

dk′

+

∫

V +
w (q, r) fw(k − q, r, t)

︸ ︷︷ ︸

gen. pos. part.

dq

−

∫

V +
w (q, r) fw(k + q, r, t)

︸ ︷︷ ︸

gen. neg. part.

dq . (2)
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The three characteristic rates in this equation are the
semiclassical scattering rate, λ(k) =

∫
S(k,k′)dk′, a self-

scattering rate to be determined later, α(k, r) ≥ 0, and a rate
associated with the Wigner potential, γ(r) =

∫
V +

w (r,k) dk.
Equation (2) is now interpreted as a Boltzmann equation,
where in- and out-scattering processes are exactly balanced,
augmented by a generation term for positive particles and one
for negative particles. Note that an interpretation of the very
last term in (2) as an out-scattering term is ruled out by its
non-locality in momentum space.

III. THE MONTE CARLO METHOD

In the same way as for the Boltzmann equation, a formal
integration in time gives a path-integral equation for the
Wigner function fw. From the adjoint integral equation one
can then derive forward MC algorithms. Various probabilities
and probability densities employed in the MC algorithm can be
directly identified from the integral-differential form (2). Intro-
ducing the rate µ = λ+α, which will determine the free-flight
duration, and the normalized distributions S(k′,k)/λ(k′) and
V +(q, r)/γ(r), (2) is reformulated as:

[
dfw

dt
+ µ fw

]

(k, r, t) =

∫

dk′ µ(k′)fw(k′, r, t)

×

[{
λ

µ

}{
S(k′,k)

λ(k′)

}

+

{
α

µ

}
{
δ(k′ − k)

}

+

{
γ

µ

}({
V +

w (k − k′)

γ(r)

}

−

{
V +

w (k′ − k)

γ(r)

})]

. (3)

In this equation all probabilities and probability distributions
are enclosed in curly brackets. Now we chose α such that
µ ≥ γ. Typical choices are µ = λ+γ or µ = Max(λ, γ). Free
flights are interrupted at a rate µ. At the end of a free flight
one selects from the complementary probabilities λ/µ and
α/µ either semiclassical or self scattering, and selects the final
state k for a given initial state k′ from S/λ or the δ-function,
respectively. Additionally, with probability γ/µ one generates
a pair of particles, whose signs are opposite. From the adjoint
integral equation (not presented here) it can be seen, that the
two generated states are k′+q and k′−q, where q is selected
from the density V +

w
(q, r)/γ(r). Apparently, for γ = 0 no

particles need to be generated and because of γ/µ = 0, the
self-scattering rate α can be chosen freely. In particular, α can
be set to zero, such that the classical MC method is regained.
The particle model and the associated probability distributions
describe the general, time and space-dependent case. In this
work we restrict ourselves to the stationary transport problem,
for which a single-particle MC method is obtained.

Assuming that extended contact regions with high doping
concentration are included in the simulation domain, one can
safely neglect quantum effects in these regions and apply a
classical distribution at the metal/semiconductor contact. As
in the classical MC method, a particle is injected at a contact
from a classical distribution and undergoes a sequence of
accelerated free flights and scattering. The free-flight time
is determined by the rate µ. In regions where the Wigner
potential and hence the pair generation rate γ are non-zero,

pairs of numerical particles are generated according to the
generation terms in (2). Therefore, after each generation event
one has to deal with three states, namely the generated ones,
k′ +q, k′ −q, and the after-scattering state k generated from
the semi-classical scattering operator (the term “in-scatt” in
(2)). Because repeating this step will lead to an exponential
increase in particle number, an additional measure has to be
introduced to control the number of particles.

In the stationary MC algorithm developed such a measure
is applied after each generation event, removing two in three
particle states and continuing trajectory construction from the
remaining state. The idea is that two particles of opposite
weight and a sufficiently small distance in phase space can
be assumed to annihilate each other. In a stationary method
a phase space grid can be utilized, on which particle states
are stored temporarily. Due to stationarity a particle stored
in a cell at some time can be annihilated by a particle of
opposite sign visiting the same cell at any other time. In the
present algorithm this idea is realized as follows. First the
weights of all three states are stored on the grid. Then the
weights in the three cells are compared. The cell with the
largest absolute weight is selected and the associated particle
state is used to continue the trajectory. The sign of the particle
weight is chosen such that the weight in the cell gets reduced.
In this way, particle trajectories are constructed sequentially
in the simulation. Furthermore, the method of selecting the
continuing particle aims at compensating the local weight
stored on the grid as much as possible. The residual weight
on the grid has to be minimized as it is an indicator for
the numerical error of the method. Simulations show that the
weights on the grid cancel to a large extent.

IV. RESULTS

Two benchmark devices have been chosen, where Device
1 is a resonant tunneling diode (RTD) described in [8].
Assuming a lattice constant of 0.565 nm, the tunnel barriers
are 5 mono-layers thick and 0.27 eV high, and the quantum
well is 8 mono-layers wide. In the Wigner MC simulation,
the length of the simulation domain was 178 mono-layers or
100.6 nm. The doping concentration in the contact regions
is 2 · 1018 cm−3. The potential changes linearly only in
the barrier/well/barrier regions and is constant in the contact
regions.

In the Wigner MC simulation of Device 1 the coherence
length is chosen to be 62.15 nm, which corresponds to 110
lattice constants. Because of the rather large coherent off-
resonant valley current of this RTD phonon scattering has
only little effect on the I/V characteristics. Both simulators
predict a slight increase in valley current due to inelastic
scattering (Fig. 1). For the coherent case I/V characteristics
at 77K and 300K are shown in Fig. 2. Compared with
NEMO–1D, somewhat higher peak and valley currents are
obtained by Wigner MC. The resonance voltages predicted
by the two solvers agree very well. The coherence length has
to be selected carefully when solving the Wigner equation
numerically. The comparison of I/V characteristics shown in
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Fig. 1. I/V characteristics of Device 1 at 300K obtained from Wigner MC and
NEMO-1D. Transport is coherent (coh.) or dissipative (scatt). Both simulators
predict a small effect of phonon scattering on the current.
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Fig. 2. I/V characteristics of Device 1 at 77K obtained from Wigner MC
and NEMO–1D.

Fig. 3 demonstrates that only a sufficiently large coherence
length gives a realistic result. A too short coherence length
results in an overestimation of the valley current.

The layer structure of Device 2 is taken from [4], assuming
a barrier height of 0.3 eV, a barrier width of 3 nm, and a
well width of 5nm. The potential changes linearly in a region
starting 10 nm before the emitter barrier and extending 19 nm
after the collector barrier. In the contact regions the doping
is 1016 cm−3 and a constant potential is assumed. In both
devices the effective mass is 0.067m0 independent of position.
The electron concentration in Device 2 is plotted in Fig. 4. At
0.3V this device is close to off-resonance. Both simulators
predict a significant increase in electron concentration in front
of the first barrier and in the quantum well when phonon
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Fig. 3. Effect of the coherence length on the I/V characteristics in Wigner
simulations. The finite difference (FD) result is taken from [8].

scattering is switched on. This effect can be understood as
follows. With the assumed piece-wise linear potential profile
a triangular potential well forms in front of the first barrier. In
this emitter notch a quasi bound state forms. In the coherent
case electrons reside in states above the emitter band edge and
cannot occupy the lower notch state. With inelastic scattering,
however, the notch state can be populated which increases the
density in the emitter notch. As a consequence, the density in
the quantum well is significantly higher and so is the valley
current.

V. DISCUSSION

These examples demonstrate that a numerical solver based
on the Wigner equation can provide quantitatively correct
results. One requirement is that the coherence length is chosen
sufficiently large. The completeness relation of the discrete
Fourier transform, which reflects Heisenberg’s uncertainty
principle, ∆kx = π/Lc shows that a small coherence length
Lc will result in a coarse grid in momentum space, and
resonance peaks might not be resolved properly. In the past
the Wigner equation has been solved most frequently by finite
difference methods. Due to the non-locality of the potential
operator all points in momentum space are coupled and
the sparsity pattern of the matrix is very poor. Therefore,
increasing the number of grid points in k-space, related to
the coherence length by Nk = Lc/∆x, can easily lead to
prohibitive memory and computation time requirements. This
might be one reason why quantitatively correct solutions were
difficult to obtain in the past.

The MC method allows the number of k-points to be in-
creased. In this work the Wigner potential is discretized using
approximately Nk = 103 points. However, high performance
RTDs with very high peak/valley current ratio pose a severe
problem for the MC method. In such a device the density can
vary over several orders of magnitude, which often can not
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Fig. 4. Effect of scattering on the electron concentration in Device 2 obtained
from Wigner MC and NEMO–1D. With scattering the the population of the
emitter notch states increases.

be resolved by the MC method, a problem well known also
from the classical MC method. Furthermore, the resonance
peak might be so narrow that a resolution with an equi-distant
k-grid is not well suited.

In a Wigner function based simulation of 1D heterostruc-
tures fundamental simulation parameters such as the coherence
length are closely linked with physical device parameters such
as the spacing from the contacts. This handicap stems from
the choice of plane wave basis sets in a quantum mechanical
regime of broken translational invariance. While analytically
appealing, this basis set proves to be numerically difficult.
The NEGF formalism used in NEMO-1D uses real space
local orbitals and energy as a quantum mechanical basis.
Devices extended over a micrometer can be simulated with an
atomic resolution in real space and a resolution of arbitrarily

sharp resonances on an average workstation without numerical
instabilities.

It is our conclusion that the novel Wigner MC method is
not an optimal method for RTD simulation. However, since the
method describes quantum effects and scattering effects with
equal accuracy it is considered a predictive tool especially
whenever some kind of quasi-ballistic transport condition
without energetically sharp resonances is present. One strength
of the Wigner function approach is the treatment of contact
regions. Non-equilibrium transport can be simulated in the
whole device formed by a central quantum region embedded in
extended classical regions. The presented Wigner MC method
can bridge the gap between classical device simulation and
pure quantum ballistic simulations.

VI. CONCLUSION

A MC method for the simulation of non-equilibrium trans-
port in nanostructures has been presented. The method solves
the Wigner equation including the Boltzmann scattering oper-
ator. The Wigner MC solver has been verified by comparative
simulations with NEMO-1D. For simplified test structures
the numerical solution of the Wigner equation is found in
good agreement with the results of NEMO-1D. In the Wigner
simulation the coherence length turned out to be a critical
parameter that has to be chosen properly. The effect of phonon
scattering on the device characteristics and the internal profile
of the density is discussed.
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