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The Wigner-function (fw) formalism has been recognized as a convenient approach to describe electron transport in meso-
scopic systems. The approach combines a rigorous quantum-kinetic level of treatment with the classical concepts for phase space
and open boundary conditions. Moreover the classical Boltzmann collision operator B is used to account for the phonon interac-
tion in picosecond transport regimes. In this case the Wigner equation reads: ( ∂

∂t
+v ·∇r)fw = Vw [fw]+B[fw] where Vw is the

Wigner potential. Particularly useful is the conjugate integral form of the equation with a kernel denoted by K. Physical aver-
ages are expressed as series obtained by consecutive iterations of the kernel K. The series can be interpreted in terms of particle
trajectories. A particle picture is associated to the transport process [1], where the Wigner potential acts as a scattering source.
A general property of this approach is that particles accumulate weight with each scattering event. As used for the evaluation
of physical averages, the weight can cause severe problems for the numerical aspects of the task [2]. The weight accumulation
originates from the Wigner potential whose modulus |Vw |, does not ensure mass conservation. We use this property for a model
where the action of the Wigner potential gives rise to generation of particle pairs.

The kernel K is modified by a decomposition of the antisymmetric function Vw into two positive functions Vw = V +
w −V −

w .
Furthermore a function ν(r) =

∫

V ±
w (r,k)dk is introduced. For better clarity the coherent one-dimensional case is presented:
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Here x(t) = x + vxt and ν(t) = ν(x(t)). The kernel links phase space points in a way which can be viewed as particle
propagation. The terms in the curly brackets are conditional probability densities with a subscript denoting the order of their
application. {.}1 selects the time t′ of a transition between the initial state (kx, x, 0) and (kx, x(t′), t′), The process is associated
with a particle undergoing free flight. The terms {.}2 simultaneously select three values of k′

x corresponding to three states
(k′

x, x(t′), t′). They are initial states for the free flights in the subsequent iteration of K and, thus, are associated with tree
particles. The δ function shows that one of them, the initial particle, which survives at the end of the free flight and is further
continued. The other two are newborn particles. As generated by ±V ±

w /ν they carry opposite signs. The signs are used in the
evaluation of the averages, and do not affect the evolution process. For convenience particles are marked as positive and negative.

In the general case, the events of phonon scattering are complementary to events of interaction with the Wigner potential.
It follows that quasi-particles are Boltzmann-like particles, subject to processes of free flights and scattering by phonons which
proceed in a classical way. The interaction with the Wigner potential occurs during the free flights and results in generation
of pairs of positive and negative particles. The generation rate and the distribution of the newborn particles in the phase space
depends on Vw according to (1). Positive and negative particles located close together have the same evolution but opposite
contribution to the averages and therefore cancel each other. Generation and cancellation of particles are characteristic features
of this quantum transport model. The model significantly improves the numerical properties of the simulation task. Monte Carlo
simulations of resonant-tunneling diode have been carried out. The obtained I-V characteristics and the distribution of generic
physical quantities have been compared with results obtained by other methods.
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