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Abstract— The behavior of the low field electron mobility in
strained active SiGe layers on SiGe substrates with arbitrary
orientation and Ge mole fraction is investigated using Monte
Carlo simulation. Euler’s angles are introduced to determine the
substrate orientation and direction for the in-plane component of
the mobility. The strain tensor is transformed to a general form
and the splitting of X and L valleys is then calculated using linear
deformation potential theory. Additionally the hydrostatic shift
is taken into account. For doped materials the ionized impurity
scattering rate is modified to take into consideration all valleys
and orientations. The Pauli exclusion principle is considered for
high doping level and its interplay with the strain effects is
discussed.

I. INTRODUCTION

In advanced semiconductor devices strain can be used as an
additional degree of freedom to enhance transport properties
due to band structure changes. A dominant change is the
degeneracy reduction of the conduction band extrema which
are degenerate in a relaxed material because of the symmetry
of the crystal. The conduction band minima splitting depends
on the projections of the valleys’ ~k vectors onto the stress
direction. In this work we investigate homogeneously strained
SiGe active layers on SiGe relaxed substrates. The stress
direction is thus perpendicular to the substrate orientation.
To describe the degeneracy reduction effect together with the
hydrostatic pressure component which shifts the mean energy
of valleys, the deformation-potential theory is applied to many-
valley cubic semiconductors [1]-[3]. Within this theory the
strain tensor is introduced and used to calculate the energy
shifts. The form of the strain tensor strongly depends on
the orientation of the interface. While the strain tensor has
diagonal form for [001] substrate orientation, it is non-diagonal
for a general substrate orientation which can cause the splitting
both of X and L valleys. As shown below the in-plane
mobility depends on the in-plane angle for a general substrate
orientation.

Other strain effects such as the splitting of degenerate orbital
bands with ~k vectors which are not parallel to the stress and
different stress-induced couplings between neighboring bands
are neglected here. The shear distortion of the crystal lattice
is also neglected. We employ an analytical description of the
conduction bands to investigate the low-field mobility and use
the zero-field Monte Carlo algorithm.

II. STRAIN TENSOR AND ENERGY SPLITTING

For a general substrate orientation the strain tensor assumes
a non-diagonal form. In order to obtain a new form of the
tensor a transformation of the coordinate system is performed.
This conserves the symmetry of the strain tensor. The coordi-
nate system transformation represents two successive rotations
which can be specified by two Euler’s angles. The third
Euler’s angle is superfluous for the strain tensor but is used
to fix the in-plane direction for the calculation of the in-plane
component of the mobility.

If the first and the second Euler’s angels are denoted as α
and β (0 ≤ α ≤ 2π, 0 ≤ β ≤ π), the transformed strain tensor
can be written as follows:

ε
′

= UT (α, β) · ε · U(α, β), (1)

where the unitary matrix U(α, β) is a product of the two
rotation operators and has the form:

U(α, β) =





cosα cosβ sin α cosβ − sinβ
− sinα cosα 0

cosα sin β sin α sin β cosβ



 . (2)

The strain tensor with respect to the interface coordinate
system has diagonal form due to the absence of in-plane
shear. We also neglect the shear distortion as an effect of
the second order. Due to biaxial dilatation (or contraction)
two diagonal components of the strain tensor are equal to
each other. The condition of zero stress along the substrate
orientation is imposed. To calculate the strain tensor elements
Hooke’s law is applied. As a result the strain tensor takes the
following form in particular for [110] substrate orientation:

ε
′

110 =





εxx εxy 0
εyx εyy 0
0 0 εzz



 , (3)

εxx = εyy =
2 · c44 − c12

c11 + c12 + 2 · c44
· ε‖

εxy = εyx = − c11 + 2 · c12

c11 + c12 + 2 · c44
· ε‖

εzz = ε‖,

(4)

and for [111] substrate orientation:
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ε
′

111 =





εxx εxy εxz

εyx εyy εyz

εzx εzy εzz



 , (5)

εxx = εyy = εzz =
4 · c44

c11 + 2 · c12 + 4 · c44
· ε‖

εxy = εyx = εxz =

= εzx = εyz = εzy = − c11 + 2 · c12

c11 + 2 · c12 + 4 · c44
· ε‖,

(6)

where c11, c12 and c44 are the elasticity constants, ε‖ =
(a‖−a0)/a0 is the relative lattice mismatch, a0 is the substrate
lattice constant and a‖ denotes the active layer lattice constant.

Using linear deformation-potential theory we obtain for the
conduction band minima splitting of the X valleys:

∆E[100]
c =

2

3
· Ξ∆

u · εxx − 1

3
· Ξ∆

u · (εyy + εzz)

∆E[010]
c =

2

3
· Ξ∆

u · εyy − 1

3
· Ξ∆

u · (εxx + εzz)

∆E[001]
c =

2

3
· Ξ∆

u · εzz −
1

3
· Ξ∆

u · (εxx + εyy),

(7)

and the L valleys:

∆E[111]
c =

2

3
· ΞL

u · (εxy + εxz + εyz)

∆E[111]
c =

2

3
· ΞL

u · (−εxy − εxz + εyz)

∆E[111]
c =

2

3
· ΞL

u · (εxy − εxz − εyz)

∆E[111]
c =

2

3
· ΞL

u · (−εxy + εxz − εyz).

(8)

The hydrostatic pressure component for the X and L valley
shifts plays an important role because of Ξ∆ 6= ΞL. The
hydrostatic shift is given as:

∆E∆,L
c =

(

Ξ∆,L
d +

Ξ∆,L
u

3

)

(εxx + εyy + εzz). (9)

From (7) it follows that in the case when all diagonal elements
of the strain tensor are equal, the X conduction band minima
are not split. This happens for example in case of [111]
substrate (see (6)). L conduction band minima are split for
[111] substrate orientation as it is seen from (8). For a general
substrate orientation both X and L valleys are split and the
strength and symmetry of the splitting depend on the values
of Euler’s angles. In particular, as shown below there are
combinations of Ge compositions of the active layer and
substrate orientations where the L valley splitting is so strong
that some L valley may become dominant even in pure Si.

The influence of strain on the effective masses is taken into
account for [001] substrate orientation using the Rieger-Vogl
model [5]. For general substrate orientation the unstrained ef-
fective masses for Si and Ge are used and a linear interpolation
is adopted for the SiGe alloy.

III. STRAIN EFFECTS AND IONIZED IMPURITY

SCATTERING

In this work we consider the influence of strain on the Fermi
level and the screening parameters of the ionized impurity
scattering model taken from [6]. The effects of strain on
impurity centers [4] in doped layers are not considered here.

Within this work we consider an analytical band structure
taking into account nonparabolicity and anisotropy. In this case
the density of states is given by the following expression:

g(ε) =

√
2m

3

2

d

√
ε

π2h̄3

√
1 + αε · (1 + 2αε) (10)

In order to find the Fermi energy in strained material we
keep only terms up to the second order in the nonparabolicity
coefficient and obtain a nonlinear equation for the Fermi
energy:

n =
∑

i

N (or)
ci

∑

j

[

F1/2

(

Ef − Eci
− ∆Ecij

kBT0

)

+

+
15

4
αkBT0F3/2

(

Ef − Eci
− ∆Ecij

kBT0

)

+

+
105

32
α2k2

BT 2
0F5/2

(

Ef − Eci
− ∆Ecij

kBT0

)]

(11)

N
(or)
ci stands for the effective density of states of the conduc-

tion band for one orientation of Valley i, index j denotes a
number of orientations available for Valley i, ∆Ecij

is the
energy splitting of the conduction band minima of Valley i
with orientation j in strained material, and T0 is the lattice
temperature. The linear and quadratic terms in (11) play an
important role if the Pauli exclusion principle is taken into
consideration as carriers can populate higher energy levels in
highly degenerate semiconductors. (11) is solved by Newton
iterations using as an initial guess the solution obtained
for non-degenerate statistics and parabolic conduction band
structure.

Under strain conditions with arbitrary substrate orientation
the expression for the inverse screening length including
nonparabolicity up to the second order takes the following
form:

β2
sij

=
e2

εsε0kBT0
N (or)

ci
· [F−1/2(ηij)+

+
15

4
αKBT0 · F1/2(ηij) +

105

32
α2K2

BT 2
0 · F3/2(ηij)],

(12)

where ηij = (Ef − Eci
− ∆Ecij

)/kBT0. It should be noted
that in semiconductors with non-parabolic bands the inverse
screening length increases which may weaken the ionized
impurity scattering rate in particular for a high doping level
when due to the Pauli exclusion principle the population of
higher energies increases significantly. Thus there are two
opposite factors which determine the strength of ionized im-
purity scattering. Another interesting effect occurs in strained
doped materials. Due to the energy band minima splitting some
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Fig. 1. Electron mobility perpendicular to the interface in strained Si on a
Si1−yGey substrate with several different substrate orientations at 300K.

valleys shift up and do not contribute to the kinetics. However
this changes at high degeneracy when the Pauli principle
causes a repopulation effect and upper split bands also give a
contribution to the transport properties. The repopulation may
be significant leading to a reduction of the conduction band
minima splitting effect.

In case of momentum-dependent screening we modify the
expression for the dielectric function to take into account the
strain induced splitting of the conduction band minima for
different valleys and orientations:

ε(q) = ε(0) ·



1 +
1

q2

∑

ij

β2
sij

Gij(ξ, ηij)



 , (13)

where Gij stands for the screening function in Valley i

with orientation j. The momentum transfer ~q = ~p′ − ~p and
temperature dependence enters through ξ.

IV. RESULTS

Here some results for the low field electron mobility in
a strained SiGe active layer grown on a SiGe substrate
with various orientations are presented. All calculations have
been performed using the zero-field Monte Carlo algorithms
developed for non-degenerate and degenerate semiconductors
in [7] and [8] respectively.

Fig.1 and Fig.2 show the low field perpendicular and in-
plane electron mobility in strained Si on Si1−yGey substrate
for several orientations. The in-plane direction coincides with
the x-direction of the coordinate system related to the interface
(perpendicular to the node line). As it is seen from these fig-
ures there is a strong dependence on the substrate orientation.
The behavior of the curves can be understood in terms of the

valley populations presented in Fig.3 for [221] orientation. It is
clearly seen that there is a repopulation effect and the L valley
comes into play which leads to a decrease of the mobility
because of the heavier effective masses. Fig.4 demonstrates
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Fig. 2. Electron mobility parallel to the interface in strained Si on a
Si1−yGey substrate with several different substrate orientations at 300K.
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Fig. 3. Populations of different valleys and orientations in strained Si on
[221] Si1−yGey substrate at 300K.

the in-plane component of the mobility as a function of Ge
composition in the active layer on a Si0.1Ge0.9 substrate with
several orientations. For general substrate orientation there
exists a dependence of the in-plane component of the mobility
on the in-plane angle that is the third Euler angle as shown
for [110] substrate orientation in Fig.5 using polar coordinates.
The mobility in doped Si on a Si0.1Ge0.9 substrate is shown in
Fig.6. The doping dependence of the perpendicular component
shows an increase at high donor concentrations. As lower
energy levels have already been occupied by electrons, due to
the Pauli exclusion principle electrons cannot scatter to them
and must scatter to higher energy levels which increases the
probability of intervalley scattering and causes the repopula-
tion effect from the lowest orientation of the split L valley to
the higher X valleys as it is shown in Fig.7. The X valleys
come into play which gives an increase of the perpendicular
component of the mobility because of the lower values of
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Fig. 4. Electron mobility parallel to the interface in strained Si1−xGex on
a Si0.1Ge0.9 substrate with several different substrate orientations at 300K.
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Fig. 6. Doping dependence of the electron mobility in Si on [111] Si0.1Ge0.9

substrate at 300K.
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effective masses in this valley.

V. CONCLUSION

Strain effects on the electron mobility in an active SiGe
layer grown on a SiGe substrate with the arbitrary orientation
have been analyzed using Monte Carlo simulations. It has been
shown that the splitting of different valleys strongly depends
on the substrate orientation and causes different behavior of
the low field electron mobility. In particular the dependence of
the in-plane mobility on the in-plane angle has been analyzed.
The mobility in doped strained SiGe has been investigated
for different substrate orientations and the influence of the
Pauli exclusion principle has been shown to have a significant
impact on the repopulation caused by strain induced splitting
of the conduction band minima.
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