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ABSTRACT

We present a generally applicable simulator module
which provides an advanced equation assembly system. The
module has been originally developed for the simulation of
semiconductor devices based on the Finite Boxes discretiza-
tion scheme and is currently used in the general purpose de-
vice and circuit simulator MINIMOS-NT. In general, such
simulations require the solution of a specific set of nonlin-
ear partial differential equations which are discretized on a
grid. Since the resulting nonlinear problem is solved by a
damped Newton algorithm the solution of a linear equation
system has to be obtained at each step. The presented module
is responsible for assembling these systems and takes several
requirements of the simulation process, namely the represen-
tation of boundary conditions, physically motivated variable
transformation, preelimination and numerical conditioning,
into account.

1 INTRODUCTION

The Finite Boxes discretization method is employed in
various kinds of numerical tools and simulators for fast and
accurate solving of nonlinear partial differential equation
(PDE) systems. The resulting discretized problem is then
usually solved by damped Newton iterations which require
the solution of a linear equation system at each step. The ex-
tensibility and effectiveness of any simulator highly depends

on the capabilities of the core modules responsible for han-
dling the linear equation systems. We present an advanced
equation assembly module which has been implemented in
the device and circuit simulator MINIMOS-NT.

MINIMOS-NT is a general purpose device and circuit
simulator that has been developed at the Institute for Mi-
croelectronics for twelve years. Besides the basic semicon-
ductor equations [Selberherr 1984], several different types
of transport equations can be solved. Among these are the
hydrodynamic equations which capture hot-carrier transport
[Stratton 1962,Bløtekjær 1970], the lattice heat flow equation
to cover thermal effects like self-heating [Wachutka 1990],
and the circuit equations to connect single devices to a cir-
cuit [Grasser and Selberherr 2001], both electrically and ther-
mally. Furthermore, various interface and boundary con-
ditions are taken care of, which include Ohmic and Schot-
tky contacts, thermionic field emission over and tunneling
through various kinds of barriers. This demands a sophis-
ticated system handling the equation assembly, in order to
keep the simulator design flexible. To implement such a sys-
tem, the requirements will be identified and generalized.

A crucial aspect is also the requirement of assembling
and solving complex-valued linear equation systems. For
that reason the module is able to handle both real-valued and
complex-valued contributions and systems.

2 THE ANALYTICAL PROBLEM

In order to analyze the electronic properties of an arbitrary
semiconductor structure under all kinds of operating condi-
tions, the effects related to the transport of charge carriers
under the influence of external fields must be modeled. In
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MINIMOS-NT carrier transport can be treated by the drift-
diffusion and the hydrodynamic transport models.

Both models are based on the semiclassical Boltzmann
transport equation which is a time-dependent partial integro-
differential equation in the six-dimensional phase space. By
the so-called method of moments this equation can be trans-
formed in an infinite series of equations. Keeping only the
zero and first order moment equations (with proper closure
assumptions) yields the basic semiconductor equations. Con-
sidering two additional moments gives the hydrodynamic
model [Grasser et al. 2003].

The basic semiconductor equations, as given by VanRoos-
broeck [VanRoosbroeck 1950], consist of the Poisson equa-
tion, the continuity equations for electron and holes as well
as the current relations for both carrier types.

The unknown quantities of this equation system are the
electrostatic potential, ψ, and the electron and hole concen-
trations, n and p, respectively. C denotes the net concen-
tration of the ionized dopants, ε is the dielectric permittivity
of the semiconductor, and R is the net recombination rate.
The heat-flow equation and thus the lattice temperature TL is
added to account for thermal effects. In the hydrodynamic
case the carrier temperatures are allowed to be different from
the lattice temperature, adding two more quantities, which
are the electron and hole temperatures Tn and Tp.

Basically, a device structure can be divided into several
segments to enable simulation of advanced heterostructures
and to properly account for all conditions (which may cause
very abrupt changes) at the contacts and interfaces between
these segments, respectively. See Fig. 1 for an illustration of
this concept. Every segment represents an independent do-
main D in one, two, or three dimensions where the PDEs are
posed. The equations are implicitly formulated for a quantity
x as f(x) = 0 and termed control functions. In order to fully
define the mathematical problem, suitable boundary condi-
tions for contacts, interfaces, and external surfaces have to
be applied.

Generally, such a system cannot be solved analytically,
and the solution must be calculated by means of numerical
methods. This approach normally consists of three tasks:

1. The domain D is partioned into a finite number of sub-
domains Di, in which the solution can be approximated
with a desired accuracy.

2. The PDE system is approximated in each of the subdo-
mains by algebraic equations. The unknown functions
are approximated by functions with a given structure.
Hence, the unknowns of the algebraic equations are ap-
proximations of the continuous solutions at discrete grid
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Figure 1: Illustration of the segment concept: a simple diode

points in the domain. Thus, generally a large system
of nonlinear, algebraic equations is obtained with un-
knowns comprised of approximations of the unknown
functions at discrete points.

3. The third task is to derive a solution of the unknowns of
the nonlinear algebraic system. In the best case an exact
solution of this system can be obtained, which repre-
sents a good approximation of the solution of the an-
alytically formulated problem (which cannot be solved
exactly). The quality of the approximation depends on
the fineness of the partioning into subdomains as well
as on the suitability of the approximating functions.

For the derivation of the discrete problem several methods
can be applied. We deal here with point residual methods:
the finite difference method based on rectangular grids or the
finite boxes (box integration) method allowing general un-
structured grids. In the case of orthogonal rectangular grids
both methods yield the same discretization.
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3 DISCRETIZATION

Nonlinear partial differential equations of second order
can appear in three variants: elliptic, parabolic, and hyper-
bolic PDEs. The Poisson equation as well as the steady-state
continuity equations form a system of elliptic PDEs, whereas
the heat-flow equation is parabolic. To completely determine
the solution of an elliptic PDE boundary conditions have to
be specified. Since parabolic and hyperbolic PDEs describe
evolutionary processes, time normally is an independent vari-
able and an initial condition is additionally required. Hence,
also the transient continuity equations are parabolic.

Applying the finite boxes discretization scheme [Selber-
herr 1984] the equations are integrated over a control volume
(subdomain, usually obtained by a Voronoi tesselation) Di

which is associated with the grid point Pi. For this grid point
a general equation for the quantity x is implicitly given as

fS
xi

=
∑
j Fxi,j

+Gi = 0 (1)

where j runs over all neighboring grid points in the same
segment, Fxi,j

is the flux between points i and j, and Gi is
the source term (see Fig. 2).
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Figure 2: Box i with 6 neighbors

Grid points on the boundary ∂D are defined as having
neighbor grid points in other segments. Thus, (1) does not
represent the complete control function fx, since all contri-
butions of fluxes into the contact or the other segment are
missing. For that reason, the information for these boxes has
to be completed by taking the boundary conditions into ac-
count. Common boundary conditions are the Dirichlet con-
dition, which specifies the solution on the boundary ∂D, the

Neumann condition, which specifies the normal derivative,
and the linear combination of these conditions giving an in-
termediate type:

n · gradx+ σx = δ (2)

Generally, the form of these conditions depends on the re-
spective boundary models, and the conditions of which de-
pend on the interior information. For that reason, the equa-
tion assembly is often performed in a coupled way, causing
complicated modules. For instance, it is absolutely necessary
to differ between interior and boundary points. Considering
a general tetrahedron, there exist many kinds of boundary
points (depending on the number of edges involved), which
have to be treated separately. This leads to a complicated
implementation of the models and can make simplifications
necessary. Thus, due to organizational and implementational
issues this form of coupling should be avoided.

More complex models with exponential interdependency
between the solution variables such as thermionic field emis-
sion interface conditions [Schroeder 1994, Simlinger 1996]
have also been implemented.

A method has been under development to implement seg-
ment models calculating the interior fluxes and their deriva-
tives independently from the boundary models. The segment
models do not have to differentiate the point type, they do not
even have to care about the boundary model used. The as-
sembly system is responsible for combining all relevant con-
tributions by using the information given by the boundary
models.

3.1 Interface Conditions

To account for complex interface conditions, grid points
located at the boundary of the segments (see Fig. 3a) have
three values, one for each segment (see Fig. 3b) and a third
point located directly at the interface which can be used to
formulate more complicated interface conditions like e.g.,
interface charges. However, to simplify notation these in-
terface values will be omitted in our discussion and only the
two interface points, i and i′, are used.

Basically, the two (incomplete) equations fS
xi

and fS
xi′

are
completed by adding the missing boundary fluxes Fxi,i′

:

fxi
= fS

xi
+ Fxi,i′

= 0 (3)

fxi′
= fS

xi′
− Fxi,i′

= 0 (4)

The intermediate type of interfaces (2) and thus also the two
other types of interfaces are generally given in linearized
form by:

α(xi − βxi′ + γ) = Fxi,i′
(5)
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α, β, and γ are linearized coefficients, Fxi,i′
represents the

flux over the interface. The three types of interfaces differ in
the magnitude of α.

In the case of an arbitrary splitting of a homogenous re-
gion into different segments, the boundary models have to
ensure that the simulation results remain unchanged. By
adding (4) to (3), the box of grid point Pi can be completed
and the boundary flux is eliminated. The merged box is now
valid for both grid points, for that reason the respective equa-
tion can not only be used for grid point Pi, but also for Pi′ .

Whereas the segment models assemble the so-called seg-
ment matrix, the interface models are responsible for assem-
bling and configuring the interface system consisting of a
boundary and special-purpose transformation matrix. New
equations based on (5) can be introduced into the boundary
matrix without any limitations on α, thus from 0 (Neumann)
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Figure 3: Splitting of interface points: Interface points as
given in a) are split into three different points hav-
ing the same geometrical coordinates b)

to ∞ (Dirichlet). The interface models are also responsi-
ble for configuring the transformation matrix to combine the
segment and boundary matrix correctly. Depending on the
interface type there are two possibilities:

• Dirichlet boundaries are characterized by α → ∞.
Thus, the implicit equation xi = βxi′−γ can be used as
a substitute equation. As these equations are normally
not diagonally dominant they have a negative impact on
the condition number and are configured to be preelim-
inated (see Section 5.4).

• For the other types (explicit boundary conditions) the
boundary flux is simply added to the segment fluxes. In
the case of a large α, the transformation matrix could be
used to scale the entries by 1/α because of the precon-
ditioner used in the solver module.

Note, that all interface-dependent information is adminis-
trated by the respective interface model only.

As an additional feature, the transformation matrix can be
used to calculate several independent boundary quantities by
combining the specific boundary value with the segment en-
tries (also in the case of Dirichlet boundaries). For example,
the dielectric flux over the interface is calculated as

∑
i f

S
xi

and introduced as a solution variable because some interface
models require the cross-interface electric field strength to
determine tunnel processes. Calculation of the normal elec-
tric field is thus trivial. Note that this is not the case when
the normal component of the electric field ~En has to be cal-
culated using neighboring points when unstructured two- or
three-dimensional grids are used.

See Fig. 4 for an illustration of these concepts. The trans-
formations are set up to combine the various segment contri-
butions with the boundary system.

3.2 Boundary Conditions

Contacts are handled in a similar way to interfaces. How-
ever, in the contact segment there is only one variable avail-
able for each solution quantity (xC). Note that contacts are
represented by spacial multi-dimensional segments. Further-
more, all fluxes over the boundary are handled as additional
solution variables FC (e.g., contact charge QC for Poisson
equation, contact electron current InC

for the electron conti-
nuity equations, or HC as the contact heat flow).

For explicit boundary conditions one gets

fxi
= fS

xi
+ Fxi,C

= 0 (6)

fFC
= FC +

∑
i f

S
xi

= 0 (7)

with i running over all segment grid points.
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At Schottky contacts explicit boundary conditions apply.
The semiconductor contact potential ψs is fixed and given as
the difference of the metal quasi-Fermi level (which is spec-
ified by the contact voltage ψC) and the metal workfunction
difference potential ψwf .

ψs = ψC − ψwf , where ψwf = −

Ew

q
(8)

The difference between the conduction band energy EC and
the metal workfunction energy gives the workfunction differ-
ence energy Ew which is the barrier height of the Schottky
contact.

For Dirichlet boundary conditions one gets

fxi
= xC − h(xi) = 0 (9)

fFC
= FC +

∑
i f

S
xi

= 0 (10)

Here, xC is the boundary value of the quantity, which is a
solution variable, whereas (10) is used as constitutive relation
for the actual flow over the boundary FC.

For example, at Ohmic contacts simple Dirichlet bound-
ary conditions apply. The contact potential ψs, the carrier
contact concentrations ns and ps, and in the hydrodynamic
simulation case, the contact carrier temperatures Tn and Tp
are fixed. The metal quasi-Fermi level (which is specified by
the contact voltage ψC) is equal to the semiconductor quasi-
Fermi level. With the constant built-in potential ψbi (calcu-
lated after [Fischer 1994]), the contact potential at the semi-
conductor boundary reads

ψs = ψC + ψbi. (11)

For Neumann boundaries the flux over the boundary is

zero

Dirichlet

Other
zero

Boundary + Trans

m1 + i1

m2 + i2

b + i1 + i2

b + i1 + i2

s1

s2

Complete Segment

substitute2 = s2

incomplete1 = i1

incomplete2 = i2

boundary = b

boundary = b

missing1 = m1

missing2 = m2

substitute1 = s1

incomplete1 = i1

incomplete2 = i2

Figure 4: The complete equations are a combination of the
boundary and the segment system. This combina-
tion is controlled by the transformation matrix and
depends on the interface type.

zero hence the equation assembled by the segment model is
already complete.

3.2.1 Separate Contact Variables

Having a separate solution variable for the contact volt-
age avoids numerical problems with large arguments of the
Bernoulli function B. Using a Scharfetter-Gummel dis-
cretization scheme [Scharfetter and Gummel 1969] the ex-
pression for the current between two grid points i and j reads

Ii,j = C1(B(∆)nj −B(−∆)ni) x (12)

with ∆ = C2(ψj − ψi) + C3 (13)

with Ci being material parameters. Applying the contact
voltage directly to the boundary grid point could cause large
arguments of B and hence numerical problems. This is
avoided by having a separate variable for the contact volt-
age. At the beginning of the iteration procedure the constitu-
tive relation for ψC is violated and will only successively be
adapted which guarantees numerical stability.

The generalized boundary condition is the constitutive re-
lation for the contact potential ψC and reads:

fψC
= αψC + βIC + γQC − δ = 0 (14)

whereQC is the contact charge and IC = InC
+IpC+ ∂QC

∂t

the contact current. It should be noted that all these quantities
are solution variables which are directly available.

4 SOLVING OF THE NONLINEAR SYSTEM

MINIMOS-NT organizes the solving of the nonlinear, but
discretized control functions f = 0 using a damped Newton
algorithm (k is the number of the iteration step) [Selberherr
1984]:

J
k
· x

k+1 = f(vk) (15)

v
k+1 = v

k + Fdx
k+1 (16)

J = −

∂f

∂v
(17)

where J is the Jacobian matrix, f(v) the residual and x

the update or correction vector (solution vector of the linear
system) that is then used to calculate the next solution vector
v of the Newton approximation.

To avoid overshoot of the solution several damping
schemes suggested by Deuflhard [Deuflhard 1974] or Bank
and Rose [Bank and Rose 1981] are providing a damping
factor Fd. For each Newton iteration step a linear equation
system A · x = b has to be assembled and solved.
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5 THE ASSEMBLY MODULE

MINIMOS-NT consists of two separate modules respon-
sible for assembling and solving linear equation systems:

1. the assembly module which is directly accessed by the
implemented physical models of the simulator, provides
an effective application programming interface, various
transformation algorithms and the preelimination sys-
tem. In addition, sorting and scaling plug-ins can be
called.

2. the solver module which is plugged into the assem-
bly module, is responsible for solving the so-called in-
ner linear equation system. The module currently used
provides a direct (Gaussian) method and two iterative
solver schemes.

The key demands on the assembly module (class) can be
summarized as follows:

1. Application Programming Interface providing methods
for

• adding contributions to the segment system

• adding contributions to the boundary system

• adding contributions to the transformation matrix

• deleting equations

• setting elimination flags

• administration of priority information

2. Row transformation: linear combination of rows to ex-
tinguish large entries (see Section 5.2).

3. Variable transformation: reduce the coupling of the
semiconductor equations (see Section 5.3).

4. Preelimination: eliminate problematic equations by
Gaussian elimination to improve the condition of the in-
ner system matrix (see Section 5.4)

5. Call of specific plug-ins (see Section 5.5) for

• Scaling: Since a threshold value (tolerance) is
used to decide whether to keep or skip an entry,
the preconditioner used (Incomplete-LU factoriza-
tion) requires a system matrix having entries of the
same order of magnitude.

• Sorting: Reduction of the bandwidth of a matrix
to reduce the fill-in.

• Solving: Calculate the solution vector of the linear
equation system.

The input of the assembly module are the contributions
of the various segment and boundary models implemented in
the simulator. The assembly module compiles these values to
a linear equation system, which is subsequently transformed
in order to improve the condition of the system matrix.

For some simulations, for example derivation of the
complex-valued admittance matrix, several linear equation
systems differ only in the right-hand-side vector. Thus,
the effort for assembling, compiling, preeliminating, sorting,
scaling and factorizing of the system matrix actually has to
be done only once - and this factored matrix could then be
used for all RHS-vectors. For that reason the module is able
to simultaneously assemble several RHS vectors.

A plug-in concept has been implemented for scaling, sort-
ing and solving the inner linear equation system, making it
possible to adapt or replace these modules easily. The sort-
ing and scaling modules get the system matrix on input and
return the sorting and scaling (diagonal) matrices which are
then applied by the assembly module. The solver module
gets the system matrix and all RHS vectors on input and re-
turns the solution vectors of all inner linear equation systems
on output.

After reverting all transformations and backsubstituting
the preeliminated equations, the output of the assembly mod-
ule are the complete solution vector (or vectors in case of
multiple right-hand-side vectors). In addition, the right-
hand-side vector(s) are returned which can be used for vari-
ous norm calculations.

A schematic overview of the complete concept is given
in Fig. 5. In the upper left corner the Newton iteration con-
trol function IterateOnce is represented, which is divided into
two stages and uses an interface class to access the assembly
module. Following the solid lines beginning at the interface,
the four matrices Tb, As, Ab, and Tv (see Section 5.1) are
assembled by using a specific storage class. All diagonal
elements are stored in one array, and the off-diagonals, the
positions of which are not known in advance, in a balanced
binary tree for each row, sorted by column. This allows flex-
ible adding of all entries of the sparse matrices.

These structures are then converted to the Modified
Sparse Compressed Row (MCSR) format [Saad 1990] and are
compiled resulting in the complete linear system (auxFLG),
which is preeliminated to get the inner and the outer linear
equation system. The inner one (represented by C) is passed
to the sorting and scaling plug-ins and finally solved by the
solver module. After the solution has been calculated, scal-
ing and sorting have to be reversed and the preeliminated
equations are solved back.
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Figure 5: Schematic assembly overview

The Newton adjustment levels (dashed lines) reuse al-
ready existing MCSR structures, which reduces the assem-
bling effort: the balanced trees may be skipped completely,
and during compiling and preelimination much simpler func-
tions (bold boxes) can be used than in the conventional as-
sembly mode (bold boxes with slash).

5.1 Assembly of the Complete Linear Equation System

The semiconductor device is divided into several seg-
ments that are geometrical regions employing a distinct set
of models. The implementation of each model is completely
independent from other models and each model is basically
allowed to enter its contributions to the linear equation sys-
tem. All boundary and interface issues are completely sepa-
rated from the general segment models, which is represented
by assembly structures for the boundary system which are
independent from the segment ones.

Thus, the system matrix A (the Jacobian matrix in
Newton approximation) will be assembled from two parts,
namely the direct part Ab (boundary models) and the trans-
formed part As (segment models). The latter is multiplied by
the row transformation matrix Tb from the left before con-

tributing to the system matrix A. The right hand side vector
b is treated the same way:

A = Ab + Tb · As (18)

b = bb + Tb · bs (19)

A · x = b (20)

Although in principle every model is allowed to add entries
to all components, the assembly module checks two prereq-
uisites before actually entering the value: first, the quantity
the value belongs to is marked to be solved (the user may re-
quest only a subset of all provided models) and secondly the
priority of the model is high enough to modify the row trans-
formation properties. As stated before, the row transforma-
tion is used to complete missing fluxes in boundary boxes.
Since a grid point can be part of more than two segments,
a ranking using a priority has been introduced. For exam-
ple, contact models have usually the highest priority and thus
their contributions are always used for completion. All three
matrices Ab, As, and Tb and the two vectors bb and bs may
be assembled simultaneously, so no assembly sequence must
be adhered to. In addition, a forth matrix Tv is assembled
which contains information for an additional variable trans-
formation (see Section 5.3).
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During the assembling process, all contributions are
added to values stored in balanced binary trees. After the
assembly is finished, these trees are converted to the sparse
matrix format MCSR since all necessary mathematical opera-
tions are defined for these structures. The analogous, column
oriented MCSC format is used to speed up column deleting
required by the transformation matrix.

During the Newton iterations the structural configuration
of these matrices is not modified very often (e.g., on enabling
more derivatives), thus, the tree assembly may be skipped
and the variables may be entered directly in the already ex-
isting MCSR structures. Hence, the effort for deleting, tree
assembling, reallocating and converting can be saved which
drastically speeds up the assembly process. However, if an
entry in the structure is missing, the conventional assembly
procedure can be easily restarted. The so-called Newton ad-
justment addresses not only the assembly matrices, but also
the resulting structures of the compilation and preelimina-
tion process. A related feature incorporates the sorting of the
inner system matrix into the preelimination process, which
allows to skip the sorting process, too. All features together
achieve a performance gain up to 11%.

5.2 Row Transformation

The complete linear equation system is built from an orig-
inal system (segment system), which is the main matrix As

and the main right hand side vector bs, both of them repre-
senting cumulated fluxes and their derivatives to the system
variables. Basically, the fluxes are calculated from segment
models which are the models for the interior of discretized
regions. The matrix is a linear superposition of very small
matrices, one for each flux, with a few non-zero elements
only. Consequently, the same superposition applies for the
vector bs. All fluxes are assigned to boxes, a box is in turn
assigned to each variable.

As the control function for a box is defined by the user,
for example being the sum of all fluxes leaving the box, the
fluxes leaving the boxes are entered into the vector bs in the
places appropriate for the variables that are assigned to the
boxes. In context of the Newton method, matrix As contains
the negative derivatives of the values in bs to the system vari-
ables, so that the change dx in the variables leads to a change
−As · dv = dbs in the right hand side. Considering bs a
function of the variable vector v, one can write:

bs = bs(v) (21)

As = −

dbs

dv
(22)

The boundary conditions will enforce some special physical
conditions at the boundaries. The control functions of boxes
along the boundary will usually be completed by the bound-

ary conditions. For example, a Dirichlet boundary condition
will use the dielectric flux cumulated in the boundary box
to calculate the surface charge on the surface of the adja-
cent material. The equation used to calculate the value of the
boundary variable, however, will not always make use of the
fluxes accumulated in the main system.

The boundary conditions are therefore implemented by
two elements: a boundary system (Ab and bb) and a trans-
formation matrix Tb. The purpose of the matrix Tb is the
forwarding of the fluxes of the main system to their final des-
tination or their resetting if they are not required. The system
of Ab and bb represents additional or substitutional parts of
the final equation for the variables at the boundaries. Again,
the entries in the matrix As are the negative derivatives of the
right hand side vector bb to the variable vector v:

bb = bb(v) (23)

Ab = −

dbb

dv
(24)

5.2.1 The Complete Linear System

The full system is assembled from the segment system and
the boundary system in the following way:

b = bb + Tb · bs (25)

A = Ab + Tb · As (26)

A · x = b (27)

(Ab + Tb · As) · x = bb + Tb · bs (28)

As stated above, vector x represents a linear change of the
variables vector v. With equation (29) and the new variables
vector vn from equation (30), the new value bn of the vector
function b(v) will be described by the linear approximation
in equation (31).

x = dv (29)

vn = v + x (30)

bn(vn) = b +
db

dv
· dv = b − A · x = 0 (31)

5.3 Variable Transformation

Especially in the case of mixed quantities in the solution
vector, a variable transformation is sometimes helpful to im-
prove the condition of the linear system. The representation
chosen here allows to specify fairly arbitrary variable trans-
formations to be applied to the system. Basically, a matrix
Tv is assembled and multiplied with the system matrix.

For example, to reduce the coupling of the semiconductor
equations and thus improve the condition of the system ma-

62



trix, a transformation of the stationary drift-diffusion model
is suggested in [Ascher et al. 1986].

The transformation expressed by matrix Tv is given by
equation (32):

((Ab + Tb · As) · Tv) · (T
−1
v · x) =

= (bb + Tb · bs)
(32)

For compactness the following substitutions will be used
hereinafter:

Ã = ((Ab + Tb · As) · Tv) (33)

x̃ = (T−1
v · x) (34)

b̃ = (bb + Tb · bs) (35)

5.4 Preelimination

The main matrix As consists of fluxes that will (if the
control functions are correctly assigned to the variables) sat-
isfy the criterion of diagonal-dominance that is necessary to
make the linear equation system solvable with an iterative
solver. The transformations and additional terms imposed by
the boundary conditions may heavily disrupt this feature both
in structural and numerical aspects. Some of the boundary or
interface conditions can make the full system matrix so ill-
conditioned that this simply prevents iterative linear solvers
from converging.

One solution to this problem which occurs only at the
boundary variables that are affected in this way by the bound-
ary conditions, is to apply Gaussian elimination to these vari-
ables/equations before the system is passed on to the linear
solver. After the iterative solver has converged, the elim-
inated variables are calculated by backsubstitution into the
eliminated equations. This process is a partial Gaussian fac-
torization of the matrix. Here, it is called preelimination.

Before they can be eliminated, the equations of this type
are sorted to the back of the matrix, together with their as-
signed variables. This is done by applying a permutation
matrix P to the linear equation system. The permutation ma-
trix is calculated automatically on solving the system. The
equation causing a possibly ill condition have to be marked
for preelimination.

The outer system is removed from the linear equation sys-
tem and later solved by Gaussian elimination, the inner sys-
tem (with an improved condition) is passed on to an iterative
solver. See Fig. 6 [Fischer 1994] for an illustration of this
concept.

The resulting system is given by (36):

(E · P · Ã · P
T) · (P · x̃) = (E · P · b̃) (36)

Here, P is the permutation matrix with its inverse equal to
its transposed matrix P

T. E is a matrix of elimination coef-
ficients obtained as the lower matrix L of a Gaussian elimi-
nation of the permuted system matrix. E contains non-zero
off-diagonals in the outer parts only, the inner matrix up to
the row/column index that narrows the section passed to the
linear solver is a strict unity matrix.

5.5 Call of Specific Plug-Ins

Matrices arising from the discretization of differential op-
erators are sparse, because only neighbor points are consid-
ered. To reduce memory consumption, only the non-zero el-
ements are stored (see MCSR format). During a factorization
of A into an upper and lower triangular matrix A = L · U,
additional matrix elements termed fill-in [Selberherr 1984]
become non-zero and require additional memory. In order to
minimize the fill-in, the system matrix is usually sorted. The
standard module provided by default obtains the sorting ma-
trix Rs (similar to P) by a Cuthill-McKee-based algorithm.

To provide the (ILU-) preconditioner with a normalized
representation of the matrix, a scaling of all values has to be
performed. The standard algorithm used by default works
with a two-stage strategy [Fischer and Selberherr 1994]: In
the first stage, the matrix is scaled such that the diagonal el-
ements are one. The second stage attempts to suppress the
off-diagonals while keeping the diagonals at unity. The re-
sulting scaling matrices Sr and Sc are diagonal matrices, and
R

T
s equals R

−1
s . With Ai · xi = bi as the inner system, the

effect of sorting and scaling is given in (37):

(Sr · (R
T
s · Ai · Rs) · Sc) · (S

−1
c · (RT

s · xi)) =

= Sr · (R
T
s · bi)

(37)
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Figure 6: All equations marked for preelimination (*) are
moved to the outer system matrix, the others re-
main in the inner one.
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The assembly module is finally responsible for passing
the resulting inner linear equation system to the solver mod-
ule. There are several approaches to obtain the solution vec-
tor: a Gaussian solver factorizes the matrix with a complete
LU factorization, followed by a forward- and a backward sub-
stitution. Iterative solvers use successive approximations of
this vector to obtain more accurate solutions to a linear equa-
tion system at each step [Barrett et al. 1994]. In addition,
the solver module provides a general interface to alternative
solvers.

After returning from the solver module, scaling and sort-
ing are reverted and the preeliminated equations are backsub-
stituted.

6 CONCLUSION

We presented the concept and implementation of an ad-
vanced assembly module successfully applied in the device
and circuit simulator MINIMOS-NT. The module provides
all conceptional and numerical features required for assem-
bling and solving linear systems arising from semiconductor
device and circuit simulation. We developed a formulation
which allows to independently treat segments, boundaries,
and interface models. Boundary and interface conditions are
dealt with separately by the boundary and interface models.
All fluxes over boundaries are available as solution variables,
which simplifies the formulation of boundary conditions and
circuit equations.

In addition, a physically motivated variable transforma-
tion can be applied. Equations can be preeliminated to im-
prove the condition of the system matrix of the resulting lin-
ear system. The remaining inner system can be passed to
specific sorting and scaling plug-ins and is finally solved by
using one of the algorithms provided by the solver or alter-
native module.

The presented concepts result in superior stability of
MINIMOS-NT without restricting model implementation and
further development. The general approach for treating
boundary conditions yields in combination with several pre-
conditioning measures diagonal-dominant linear equation
systems well prepared for advanced solver algorithms. As a
result, boundary conditions for specific operating points can
be directly applied without successively stepping to the de-
sired value as is very common even in commercial simula-
tors.
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