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ABSTRACT

We present advanced equation assembling techniques as
demanded by various kinds of numerical simulators solving a
discretized system of nonlinear partial differential equations.
Since the nonlinear problem is usually solved by a damped
Newton algorithm, for each iteration one linear equation sys-
tem has to be solved. The assembly approach itself is sup-
plemented by several concepts required by the simulation
process, for example the treatment of boundary conditions,
physically motivated variable transformation, and numerical
conditioning. The complete set of features, which has been
implemented and coupled to the general purpose device and
circuit simulator MINIMOS-NT, is presented in this work.

INTRODUCTION

The Finite Boxes discretization method is employed in
various kinds of numerical tools and simulators for the fast
and accurate solution of nonlinear partial differential equa-
tion (PDE) systems. The resulting discretized problem is
then usually solved by damped Newton iterations (Deuflhard
1974, Bank and Rose 1981) which require the solution of a
linear equation system at each step. The extensibility and
efficiency of any simulator highly depends on the capabili-
ties of the core modules responsible for handling the linear
equation systems.

We present an advanced approach for designing the equa-
tion assembly process which has been implemented in the
general purpose device and circuit simulator MINIMOS-NT
(IuE 2002). Besides the basic semiconductor equations (Sel-
berherr 1984), several different types of transport equations
can be solved. Among these are the hydrodynamic equa-
tions which capture hot-carrier transport, the lattice heat flow
equation to cover thermal effects like self-heating, and the
circuit equations to connect single devices to a circuit, both
electrically and thermally. Furthermore, various interface
and boundary conditions are taken care of, which include
Ohmic and Schottky contacts, and thermionic field emission

over and tunneling through various kinds of barriers. This
demands a sophisticated system handling the equation as-
sembly in order to keep the simulator design flexible. To
implement such a system, the requirements have been identi-
fied and generalized. A crucial aspect is also the demand for
assembling and solving complex-valued linear equation sys-
tems. For that reason the module has been designed to handle
both real-valued and complex-valued contributions and sys-
tems.

THE ANALYTICAL PROBLEM

In order to analyze the electronic properties of an arbitrary
semiconductor structure under all kinds of operating condi-
tions, the effects related to the transport of charge carriers
under the influence of external fields must be modeled. In
MINIMOS-NT carrier transport can be treated by the drift-
diffusion and the hydrodynamic transport models.

Both models are based on the semiclassical Boltzmann
transport equation which is a time-dependent partial integro-
differential equation in the six-dimensional phase space. By
the so-called method of moments this equation can be trans-
formed in an infinite series of equations. Keeping only the
zero and first order moment equations (with proper closure
assumptions) yields the basic semiconductor equations (drift-
diffusion model).

These equations as given first by VanRoosbroeck (Van-
Roosbroeck 1950) are the Poisson equation (1), the continu-
ity equations for electrons (2) and holes (3) including a drift
and diffusion term:

div(ε · grad ψ) = −ρ (1)

div (Dn · grad n− µn · n · grad ψ) = R+
∂n

∂t
(2)

div (Dp · grad p+ µp · p · grad ψ) = R+
∂p

∂t
(3)

The unknown quantities of this equation system are the elec-
trostatic potential ψ, and the electron and hole concentrations
n and p, respectively. ε is the dielectric permittivity of the
semiconductor, ρ denotes the space charge density, Dn and
Dp are the diffusion coefficients, µn and µp stand for the car-
rier mobilities, and R describes the net recombination rate.
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These variables depend on the unknown quantities ψ, n, and
p (Selberherr 1984) and have to be modeled properly (Snow-
den 1989). The equation system is rendered by these models
in a nonlinear form.

The heat flow equation (4) is added to account for thermal
effects in the device:

div(κL · gradTL) = ρL · cL (4)

This equation requires proper modeling of the thermal con-
ductivity κL, the mass density ρL, and the heat capacity cL.
The parameters of equations (1) to (3) depend also on the
lattice temperature TL and have to be modeled properly.

Considering two additional moments gives the hydrody-
namic model (Grasser et al. 2003), where the carrier tempera-
tures are allowed to be different from the lattice temperature.
Since the current densities depend then on the respective car-
rier temperature, two more quantities, the electron tempera-
ture Tn and the hole temperature Tp, are added.

Basically, a device structure can be divided into several
segments to enable simulation of advanced heterostructures
and to properly account for all conditions (which may cause
very abrupt changes) at the contacts and interfaces between
these segments, respectively. Every segment represents an
independent domain D in one, two, or three dimensions
where the PDEs are posed. The equations are implicitly for-
mulated for a quantity x as f(x) = 0 and termed control
functions. In order to fully define the mathematical problem,
suitable boundary conditions for contacts, interfaces, and ex-
ternal surfaces have to be applied.

Generally, such a system cannot be solved analytically,
and the solution must be calculated by means of numerical
methods. This approach normally consists of three tasks: at
the beginning the domain D is partitioned into a finite num-
ber of subdomains Di, in which the solution can be approx-
imated with a desired accuracy. Then, the PDE system is
approximated in each of the subdomains by algebraic equa-
tions. The unknown functions are approximated by functions
with a given structure. Hence, the unknowns of the algebraic
equations are approximations of the continuous solutions at
discrete grid points in the domain. Thus, generally a large
system of nonlinear, algebraic equations is obtained with un-
knowns comprised of approximations of the unknown func-
tions at discrete points. The third task is to derive a solu-
tion of the unknowns of the nonlinear algebraic system. The
quality of the approximation depends on the resolution of the
partitioning into subdomains as well as on the suitability of
the approximating functions.

THE DISCRETIZED PROBLEM

For the derivation of the discrete problem several meth-
ods can be applied. We deal here with point residual meth-
ods: the finite difference method based on rectangular grids
or the finite boxes (box integration) method allowing general
unstructured grids.

Nonlinear partial differential equations of second order
can appear in three variants: elliptic, parabolic, and hyper-
bolic PDEs. The Poisson equation as well as the steady-state
continuity equations form a system of elliptic PDEs, whereas
the heat-flow equation is parabolic. To completely determine
the solution of an elliptic PDE boundary conditions have to
be specified. Since parabolic and hyperbolic PDEs describe
evolutionary processes, time normally is an independent vari-
able and an initial condition is additionally required. Hence,
also the transient continuity equations are parabolic.

Applying the finite boxes discretization scheme (Selber-
herr 1984) the equations are integrated over a control volume
(subdomain, usually obtained by a Voronoi tesselation) Di

which is associated with the grid point Pi. For this grid point
a general equation for the quantity x is implicitly given as

fS
xi

=
∑

j Fxi,j
+Gi = 0 (5)

where j runs over all neighboring grid points in the same
segment, Fxi,j

is the flux between points i and j, and Gi

is the source term (see Fig. 1). Grid points on the bound-

F2i

F1i

F4i

F3i

Box i

F6i

Gi

F5i

4

5

6

2

1

3
i

Figure 1: Box i with 6 neighbors

ary ∂D are defined as having neighbor grid points in other
segments. Thus, (5) does not represent the complete control
function f(x), since all contributions of fluxes into the con-
tact or the other segment are missing. For that reason, the
information for these boxes has to be completed by taking
the boundary conditions into account. Common boundary
conditions are the Dirichlet condition which specifies the so-
lution on the boundary ∂D, the Neumann condition which
specifies the normal derivative, and the linear combination of
these conditions giving an intermediate type:

n · gradx+ σx = δ (6)

Generally, the form of these conditions depends on the re-
spective boundary models. For that reason the equation as-
sembly is often performed in a coupled way, causing compli-
cated modules. For instance, it is absolutely necessary to dif-
fer between interior and boundary points. Considering a gen-
eral tetrahedron, there exist many kinds of boundary points
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Figure 2: Splitting of interface points: Interface points as
given in a) are split into three different points hav-
ing the same geometrical coordinates b)

(depending on the number of edges involved), which have to
be treated separately. This leads to a complicated implemen-
tation of the models and can make simplifications necessary.
Thus, due to organizational and implementational issues this
form of coupling should be avoided.

More complex models with exponential interdependence
between the solution variables such as thermionic field emis-
sion interface conditions (Schroeder 1994) have also been
implemented.

The method which has been developed allows to imple-
ment the segment models which describe the interior fluxes
and their derivatives independently from the boundary mod-
els. The segment models do not have to differentiate the point
type, they do not even have to care about the boundary model
used. The assembly system is responsible for combining all
relevant contributions by using the information given by the
boundary models.

Interface Conditions

To account for complex interface conditions, grid points
located at the boundary of the segments have three values
(see Fig. 2), one for each segment and a third point located
directly at the interface which can be used to formulate more
complicated interface conditions, e.g. like interface charges.

However, to simplify notation these interface values will be
omitted in our discussion and only the two interface points, i
and i′, are used. Basically, the two equations fS

xi
and fS

xi′
are

completed by adding the missing boundary fluxes Fxi,i′
:

fxi
= fS

xi
+ Fxi,i′

= 0 (7)

fxi′
= fS

xi′
− Fxi,i′

= 0 (8)

The intermediate type of interfaces (6) and thus also the two
other types of interfaces are generally given in linearized
form by:

α(xi − βxi′ + γ) = Fxi,i′
(9)

α, β, and γ are linearized coefficients, Fxi,i′
represents the

flux over the interface. The three types of interfaces differ in
the magnitude of α.

In the case of an arbitrary splitting of a homogeneous re-
gion into different segments, the boundary models have to
ensure that the simulation results remain unchanged. By
adding (8) to (7), the box of grid point Pi can be completed
and the boundary flux is eliminated. The merged box is now
valid for both grid points, for that reason the respective equa-
tion can not only be used for grid point Pi, but also for Pi′ .

Whereas the segment models assemble the so-called seg-
ment matrix, the interface models are responsible for assem-
bling and configuring the interface system consisting of a
boundary and special-purpose transformation matrix. New
equations based on (9) can be introduced into the boundary
matrix without any limitations on α, thus from 0 (Neumann)
to ∞ (Dirichlet). The interface models are also responsi-
ble for configuring the transformation matrix to combine the
segment and boundary matrix correctly. Depending on the
interface type there are two possibilities:

• Dirichlet boundaries are characterized by α → ∞.
Thus, the implicit equation xi = βxi′−γ can be used as
a substitute equation. As these equations are normally
not diagonally dominant they have a negative impact on
the condition number of the system matrix and are con-
figured to be preeliminated (see below).

• For the other types (explicit boundary conditions) the
boundary flux is simply added to the segment fluxes. In
the case of a large α the transformation matrix can be
used to scale the entries by 1/α because of the precon-
ditioner used in the solver module.

Note, that all interface-dependent information is adminis-
trated by the respective interface model only.

As an additional feature the transformation matrix can be
used to calculate several independent boundary quantities by
combining the specific boundary value with the segment en-
tries (also in the case of Dirichlet boundaries). For example,
the dielectric flux over the interface is calculated as

∑
i f

S
xi

and introduced as a solution variable because some interface
models require the cross-interface electric field strength to
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determine tunnel processes. Calculation of the normal elec-
tric field is thus trivial. Note, that this is not the case when
the normal component of the electric field ~En has to be calcu-
lated using neighboring points in the case unstructured two-
or three-dimensional grids are used.

Fig. 3 illustrates these concepts. The transformations are
set up to combine the various segment contributions with the
boundary system.

zero

Dirichlet

Other
zero

Boundary + Trans

m1 + i1

m2 + i2

b + i1 + i2

b + i1 + i2

s1

s2

Complete Segment

substitute2 = s2

incomplete1 = i1

incomplete2 = i2

boundary = b

boundary = b

missing1 = m1

missing2 = m2

substitute1 = s1

incomplete1 = i1

incomplete2 = i2

Figure 3: The complete equations are a combination of the
boundary and the segment system. This combina-
tion is controlled by the transformation matrix and
depends on the interface type.

Boundary Conditions

Contacts are handled in a similar way to interfaces. How-
ever, in the contact segment there is only one variable avail-
able for each solution quantity (xC). Note, that contacts are
represented by spacial multi-dimensional segments.

Furthermore, all fluxes over the boundary are handled as
additional solution variables FC (e.g., contact charge QC for
Poisson equation, contact electron current InC

for the elec-
tron continuity equation, or HC as the contact heat flow).

With i running over all segment grid points, for explicit
boundary conditions one gets

fxi
= fS

xi
+ Fxi,C

= 0

fFC
= FC +

∑
i f

S
xi

= 0

For Dirichlet boundary conditions one gets

fxi
= xC − h(xi) = 0 (10)

fFC
= FC +

∑
i f

S
xi

= 0 (11)

Here, xC in (10) is the boundary value of the quantity, which
is a solution variable, whereas (11) is used as constitutive
relation for the actual flow over the boundary FC. h(xi) de-
notes the substitute equation.

For Neumann boundaries the flux over the boundary is
zero hence the equation assembled by the segment model is
already complete.

Assembly of the Complete System

The semiconductor device is divided into several seg-
ments that are geometrical regions employing a distinct set
of models. The implementation of each model is completely
independent from other models and each model is basically
allowed to enter its contributions to the linear equation sys-
tem. All boundary and interface issues are completely sep-
arated from the general segment models. Hence, also com-
pletely independent assembly structures for the boundary and
segment system are used.

Thus, the system matrix A (the Jacobian matrix in a New-
ton approximation) will be assembled from two parts, namely
the direct part Ab (boundary models) and the transformed
part As (segment models). The latter is multiplied by the
row transformation matrix Tb from the left before contribut-
ing to the system matrix A. The right hand side vector b is
treated the same way:

A = Ab + Tb · As

b = bb + Tb · bs

A · x = b

Although in principle every model is allowed to add entries
to all components, the assembly module checks two pre-
requisites before actually entering the value: first, the quan-
tity the value belongs to is marked to be solved (the user may
request only a subset of all provided models) and secondly
the priority of the model is high enough to modify the row
transformation properties. As stated before, the row transfor-
mation is used to complete missing fluxes in boundary boxes.
Since a grid point can be part of more than two segments,
a ranking using a priority has been introduced. For exam-
ple, contact models have usually the highest priority and thus
their contributions are always used for completion.

All three matrices Ab, As, and Tb and the two vectors
bb and bs may be assembled simultaneously, so no assembly
sequence must be adhered to. In addition, a forth matrix Tv

is assembled which contains information for an additional
variable transformation.

THE ASSEMBLY MODULE

MINIMOS-NT consists of two separate modules responsi-
ble for assembling and solving linear equation systems. First,
the assembly module which is directly accessed by the imple-
mented physical models of the simulator, provides an effec-
tive application programming interface, various transforma-
tion algorithms and the preelimination system. In addition,
sorting and scaling plug-ins can be called. Second, the solver
module which is plugged into the assembly module, is re-
sponsible for solving the so-called inner linear equation sys-
tem. The module currently used provides a direct (Gaussian)
method and two iterative solver schemes.

The key demands on the assembly module (class) can be
summarized as follows:
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1. The Application Programming Interface provides meth-
ods for

• adding values to the segment system

• adding values to the boundary system

• adding values to the transformation matrix

• deleting equations

• setting elimination flags

• administration of priority information

2. The row transformation performs a linear combination
of rows to extinguish large entries.

3. The variable transformation is used to reduce the cou-
pling of the semiconductor equations. Especially in the
case of mixed quantities in the solution vector, a variable
transformation is sometimes helpful to improve the con-
dition of the linear system. The representation chosen
here allows to specify fairly arbitrary variable transfor-
mations to be applied to the system. Basically, a matrix
Tv is assembled and multiplied with the system matrix.

4. The preelimination is required to eliminate problematic
equations by Gaussian elimination in order to improve
the condition of the inner system matrix. Matrix As

consists of fluxes that will (if the control functions are
correctly assigned to the variables) satisfy the criterion
of diagonal-dominance that is necessary to make the lin-
ear equation system solvable with an iterative solver.
The transformations and additional terms imposed by
the boundary conditions may heavily disrupt this fea-
ture both in structural and numerical aspects. Some of
the boundary or interface conditions can make the full
system matrix so ill-conditioned that this simply pre-
vents iterative linear solvers from converging.

5. Specific plug-ins are called for

• Scaling: Since a threshold value (tolerance) is
used to decide whether to keep or skip an entry,
the preconditioner used (Incomplete-LU factoriza-
tion) requires a system matrix having entries of the
same order of magnitude.

• Sorting: Reduction of the bandwidth of a matrix
to reduce the fill-in.

• Solving: Calculate the solution vector of the linear
equation system.

6. After reverting all transformations and backsubstituting
the preeliminated equations, the output of the assembly
module is the complete solution vector. In addition, the
right-hand-side vector is returned which can be used for
various norm calculations.

CONCLUSION

We presented advanced equation assembly techniques
which are successfully applied in the device and circuit simu-
lator MINIMOS-NT. Among these are all features required

for the effective and efficient assembling of linear equation
systems. We developed a formulation which allows to inde-
pendently treat segments, boundaries, and interface models.
All fluxes over boundaries are available as solution variables,
which simplifies the formulation of boundary conditions and
circuit equations.

The presented concepts result in superior stability of
MINIMOS-NT without restricting model implementation and
further development. The general approach for treating
boundary conditions yields in combination with several pre-
conditioning measures diagonal-dominant linear equation
systems well prepared for advanced solver algorithms. As a
result, boundary conditions for specific operating points can
be directly applied without successively stepping to the de-
sired value as is very common even in commercial simula-
tors.
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