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ABSTRACT
We present a generally applicable approach which allows to
efficiently assemble equations necessary for solving a sys-
tem of nonlinear partial differential equations discretized
on a grid. Since the nonlinear problem is usually solved by
a damped Newton algorithm the solution of a linear equa-
tion system has to be obtained at each step. Our assem-
bly approach for these systems has been originally devel-
oped for the simulation of semiconductor devices based on
the Finite Boxes discretization scheme. It has been rig-
orously implemented in a simulator module which is cur-
rently used in the general purpose device and circuit simu-
lator MINIMOS-NT. In addition to the assembly itself, sev-
eral requirements of the simulation process, namely the
representation of boundary conditions, physically moti-
vated variable transformation, and numerical conditioning,
are taken into account.

1 Introduction

The Finite Boxes discretization method is employed in var-
ious kinds of numerical tools and simulators for the fast and
accurate solution of nonlinear partial differential equation
(PDE) systems. The resulting discretized problem is then
usually solved by damped Newton iterations which require
the solution of a linear equation system at each step. The
extensibility and efficiency of any simulator highly depends
on the capabilities of the core modules responsible for han-
dling the linear equation systems.

We present an advanced approach for designing the
equation assembly process which has been implemented in
the general purpose device and circuit simulator MINIMOS-
NT [1]. Besides the basic semiconductor equations [2],

several different types of transport equations can be solved.
Among these are the hydrodynamic equations which cap-
ture hot-carrier transport [3], the lattice heat flow equation
to cover thermal effects like self-heating [4], and the cir-
cuit equations to connect single devices to a circuit [5],
both electrically and thermally. Furthermore, various inter-
face and boundary conditions are taken care of, which in-
clude Ohmic and Schottky contacts, thermionic field emis-
sion over and tunneling through various kinds of barriers.
This demands a sophisticated system handling the equa-
tion assembly in order to keep the simulator design flexi-
ble. To implement such a system, the requirements have
been identified and generalized. A crucial aspect is also the
requirement of assembling and solving complex-valued lin-
ear equation systems. For that reason the module is able to
handle both real-valued and complex-valued contributions
and systems.

2 The Analytical Problem

In order to analyze the electronic properties of an arbitrary
semiconductor structure under all kinds of operating condi-
tions, the effects related to the transport of charge carriers
under the influence of external fields must be modeled. In
MINIMOS-NT carrier transport can be treated by the drift-
diffusion and the hydrodynamic transport models.

Both models are based on the semiclassical Boltz-
mann transport equation which is a time-dependent partial
integro-differential equation in the six-dimensional phase
space. By the so-called method of moments this equation
can be transformed in an infinite series of equations. Keep-
ing only the zero and first order moment equations (with
proper closure assumptions) yields the basic semiconduc-
tor equations (drift-diffusion model).

These equations as given first by VanRoosbroeck [6]
are the Poisson equation (1), the continuity equations for

397-055 494



electrons (2) and holes (3) including a drift and diffusion
term:

div(ε · grad ψ) = −ρ (1)

div (Dn · grad n− µn · n · grad ψ) = R+
∂n

∂t
(2)

div (Dp · grad p+ µp · p · grad ψ) = R+
∂p

∂t
(3)

The unknown quantities of this equation system are
the electrostatic potential ψ, and the electron and hole con-
centrations n and p, respectively. ε is the dielectric permit-
tivity of the semiconductor, ρ denotes the space charge den-
sity, Dn and Dp are the diffusion coefficients, µn and µp
stand for the carrier mobilities, and R describes the net re-
combination rate. These variables depend on the unknown
quantities ψ, n, and p [2] and have to be modeled properly
[7]. The equation system is rendered by these models in a
nonlinear form.

The heat flow equation (4) is added to account for
thermal effects in the device:

div(κL · gradTL) = ρL · cL (4)

This equation requires proper modeling of the thermal
conductivity κL, the mass density ρL, and the heat capacity
cL. The parameters of equations (1) to (3) depend also on
the lattice temperature TL and have to be modeled properly.

Considering two additional moments gives the hydro-
dynamic model [8], where the carrier temperatures are al-
lowed to be different from the lattice temperature. Since
the current densities depend then on the respective carrier
temperature, two more quantities, the electron temperature
Tn and the hole temperature Tp, are added.

Basically, a device structure can be divided into
several segments to enable simulation of advanced het-
erostructures and to properly account for all conditions
(which may cause very abrupt changes) at the contacts and
interfaces between these segments, respectively. Every seg-
ment represents an independent domain D in one, two, or
three dimensions where the PDEs are posed. The equations
are implicitly formulated for a quantity x as f(x) = 0 and
termed control functions. In order to fully define the mathe-
matical problem, suitable boundary conditions for contacts,
interfaces, and external surfaces have to be applied.

Generally, such a system cannot be solved analyti-
cally, and the solution must be calculated by means of nu-
merical methods. This approach normally consists of three
tasks:

1. The domain D is partitioned into a finite number of
subdomains Di, in which the solution can be approxi-
mated with a desired accuracy.

2. The PDE system is approximated in each of the subdo-
mains by algebraic equations. The unknown functions

are approximated by functions with a given structure.
Hence, the unknowns of the algebraic equations are
approximations of the continuous solutions at discrete
grid points in the domain. Thus, generally a large
system of nonlinear, algebraic equations is obtained
with unknowns comprised of approximations of the
unknown functions at discrete points.

3. A solution of the unknowns of the nonlinear algebraic
system must be computed. In the best case an exact
solution of this system can be obtained, which repre-
sents a good approximation of the solution of the ana-
lytically formulated problem (which cannot be solved
exactly). The quality of the approximation depends
on the resolution of the partitioning into subdomains
as well as on the suitability of the approximating func-
tions.

3 The Discretized Problem

For the derivation of the discrete problem several methods
can be applied. We deal here with point residual methods:
the finite difference method based on rectangular grids or
the finite boxes (box integration) method allowing general
unstructured grids. In the case of orthogonal rectangular
grids both methods yield the same discretization.

Nonlinear partial differential equations of second or-
der can appear in three variants: elliptic, parabolic, and hy-
perbolic PDEs. The Poisson equation as well as the steady-
state continuity equations form a system of elliptic PDEs,
whereas the heat-flow equation is parabolic. To completely
determine the solution of an elliptic PDE boundary condi-
tions have to be specified. Since parabolic and hyperbolic
PDEs describe evolutionary processes, time normally is an
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independent variable and an initial condition is additionally
required. Hence, also the transient continuity equations are
parabolic.

Applying the finite boxes discretization scheme [2]
the equations are integrated over a control volume (subdo-
main, usually obtained by a Voronoi tesselation) Di which
is associated with the grid point Pi. For this grid point a
general equation for the quantity x is implicitly given as

fS
xi

=
∑
j Fxi,j

+Gi = 0 (5)

where j runs over all neighboring grid points in the
same segment, Fxi,j

is the flux between points i and j, and
Gi is the source term (see Fig. 1).

Grid points on the boundary ∂D are defined as having
neighbor grid points in other segments. Thus, (5) does not
represent the complete control function f(x), since all con-
tributions of fluxes into the contact or the other segment are
missing. For that reason, the information for these boxes
has to be completed by taking the boundary conditions into
account. Common boundary conditions are the Dirichlet
condition which specifies the solution on the boundary ∂D,
the Neumann condition which specifies the normal deriva-
tive, and the linear combination of these conditions giving
an intermediate type:

n · gradx+ σx = δ (6)

Generally, the form of these conditions depends on
the respective boundary models. For that reason the equa-
tion assembly is often performed in a coupled way, caus-
ing complicated modules. For instance, it is absolutely
necessary to differ between interior and boundary points.
Considering a general tetrahedron, there exist many kinds
of boundary points (depending on the number of edges in-
volved), which have to be treated separately. This leads to
a complicated implementation of the models and can make
simplifications necessary. Thus, due to organizational and
implementational issues this form of coupling should be
avoided.

More complex models with exponential interdepen-
dence between the solution variables such as thermionic
field emission interface conditions [9] have also been im-
plemented.

The method which has been developed allows to im-
plement the segment models which describe the interior
fluxes and their derivatives independently from the bound-
ary models. The segment models do not have to differen-
tiate the point type, they do not even have to care about
the boundary model used. The assembly system is respon-
sible for combining all relevant contributions by using the
information given by the boundary models.

3.1 Interface Conditions

To account for complex interface conditions, grid points
located at the boundary of the segments (see Fig. 2a) have
three values, one for each segment (see Fig. 2b) and a third
point located directly at the interface which can be used to
formulate more complicated interface conditions like e.g.,
interface charges. However, to simplify notation these in-
terface values will be omitted in our discussion and only
the two interface points, i and i′, are used.

Basically, the two equations fS
xi

and fS
xi′

are com-
pleted by adding the missing boundary fluxes Fxi,i′

:

fxi
= fS

xi
+ Fxi,i′

= 0 (7)

fxi′
= fS

xi′
− Fxi,i′

= 0 (8)

The intermediate type of interfaces (6) and thus also
the two other types of interfaces are generally given in lin-
earized form by:

α(xi − βxi′ + γ) = Fxi,i′
(9)
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Figure 2. Splitting of interface points: Interface points as
given in a) are split into three different points having the
same geometrical coordinates b)
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α, β, and γ are linearized coefficients, Fxi,i′
repre-

sents the flux over the interface. The three types of inter-
faces differ in the magnitude of α.

In the case of an arbitrary splitting of a homogeneous
region into different segments, the boundary models have
to ensure that the simulation results remain unchanged. By
adding (8) to (7), the box of grid point Pi can be completed
and the boundary flux is eliminated. The merged box is
now valid for both grid points, for that reason the respective
equation can not only be used for grid point Pi, but also for
Pi′ .

Whereas the segment models assemble the so-called
segment matrix, the interface models are responsible for
assembling and configuring the interface system consist-
ing of a boundary and special-purpose transformation ma-
trix. New equations based on (9) can be introduced into the
boundary matrix without any limitations on α, thus from
0 (Neumann) to ∞ (Dirichlet). The interface models are
also responsible for configuring the transformation matrix
to combine the segment and boundary matrix correctly. De-
pending on the interface type there are two possibilities:

• Dirichlet boundaries are characterized by α → ∞.
Thus, the implicit equation xi = βxi′ −γ can be used
as a substitute equation. As these equations are nor-
mally not diagonally dominant they have a negative
impact on the condition number and are configured to
be preeliminated (see Section 4).

• For the other types (explicit boundary conditions) the
boundary flux is simply added to the segment fluxes.
In the case of a large α the transformation matrix can
be used to scale the entries by 1/α because of the pre-
conditioner used in the solver module.

Note, that all interface-dependent information is adminis-
trated by the respective interface model only.

As an additional feature the transformation matrix can
be used to calculate several independent boundary quanti-
ties by combining the specific boundary value with the seg-
ment entries (also in the case of Dirichlet boundaries). For
example, the dielectric flux over the interface is calculated
as

∑
i f

S
xi

and introduced as a solution variable because
some interface models require the cross-interface electric
field strength to determine tunnel processes. Calculation
of the normal electric field is thus trivial. Note, that this
is not the case when the normal component of the electric
field ~En has to be calculated using neighboring points in
the case unstructured two- or three-dimensional grids are
used.

Fig. 3 illustrates these concepts. The transformations
are set up to combine the various segment contributions
with the boundary system.

zero

Dirichlet

Other
zero

Boundary + Trans

m1 + i1

m2 + i2

b + i1 + i2

b + i1 + i2

s1

s2

Complete Segment

substitute2 = s2

incomplete1 = i1

incomplete2 = i2

boundary = b

boundary = b

missing1 = m1

missing2 = m2

substitute1 = s1

incomplete1 = i1

incomplete2 = i2

Figure 3. The complete equations are a combination of
the boundary and the segment system. This combination
is controlled by the transformation matrix and depends on
the interface type.

3.2 Boundary Conditions

Contacts are handled in a similar way to interfaces. How-
ever, in the contact segment there is only one variable avail-
able for each solution quantity (xC). Note, that contacts are
represented by spacial multi-dimensional segments. Fur-
thermore, all fluxes over the boundary are handled as ad-
ditional solution variables FC (e.g., contact charge QC for
Poisson equation, contact electron current InC

for the elec-
tron continuity equation, or HC as the contact heat flow).

With i running over all segment grid points, for ex-
plicit boundary conditions one gets

fxi
= fS

xi
+ Fxi,C

= 0 (10)

fFC
= FC +

∑
i f

S
xi

= 0 (11)

For example, at Schottky contacts explicit boundary
conditions apply. The semiconductor contact potential ψs

is fixed and given as the difference of the metal quasi-Fermi
level (which is specified by the contact voltage ψC) and the
metal workfunction difference potential ψwf [9].

ψs = ψC − ψwf (12)

For Dirichlet boundary conditions one gets

fxi
= xC − h(xi) = 0 (13)

fFC
= FC +

∑
i f

S
xi

= 0 (14)

Here, xC is the boundary value of the quantity, which
is a solution variable, whereas (14) is used as constitutive
relation for the actual flow over the boundary FC. h(xi)
denotes the substitute equation. For example, at Ohmic
contacts Dirichlet boundary conditions apply. The metal
quasi-Fermi level is equal to the semiconductor quasi-
Fermi level. With the constant built-in potential ψbi (calcu-
lated after [10]), the contact potential at the semiconductor
boundary reads

ψs = ψC + ψbi. (15)
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For Neumann boundaries the flux over the boundary
is zero hence the equation assembled by the segment model
is already complete.

Having a separate solution variable for the contact
voltage avoids numerical problems with large arguments of
the Bernoulli function B. If the Scharfetter-Gummel dis-
cretization scheme [11] is used, applying the contact volt-
age directly to the boundary grid point can cause large ar-
guments of B and hence numerical problems.

This is avoided by having a separate variable for the
contact voltage. At the beginning of the iteration proce-
dure the constitutive relation for ψC is violated and will
only successively be adapted which guarantees numerical
stability.

The generalized boundary condition is the constitu-
tive relation for the contact potential ψC and reads:

fψC
= αψC + βIC + γQC − δ = 0 (16)

whereQC is the contact charge and IC = InC
+IpC +

∂QC

∂t
the contact current. It should be noted that all these

quantities are solution variables which are directly avail-
able.

3.3 Solving of the Nonlinear System

MINIMOS-NT organizes the solving of the nonlinear, but
discretized control functions f = 0 using a damped New-
ton algorithm (k is the number of the iteration step) [2]:

J
k
· x

k+1 = f(vk) (17)

v
k+1 = v

k + Fd · x
k+1 (18)

J = −

∂f

∂v
(19)

where J is the Jacobian matrix, f(v) the residual and
x the update or correction vector (solution vector of the lin-
ear system) that is then used to calculate the next solution
vector v of the Newton approximation.

To avoid overshoot of the solution several damping
schemes suggested by Deuflhard [12] or Bank and Rose
[13] are providing a damping factor Fd. For each Newton
iteration step a linear equation system A · x = b has to be
assembled and solved.

3.4 Assembly of the Complete
Linear Equation System

The semiconductor device is divided into several segments
that are geometrical regions employing a distinct set of
models. The implementation of each model is completely
independent from other models and each model is basically
allowed to enter its contributions to the linear equation sys-
tem. All boundary and interface issues are completely sep-
arated from the general segment models. Hence, also com-
pletely independent assembly structures for the boundary
and segment system are used.

Thus, the system matrix A (the Jacobian matrix in
Newton approximation) will be assembled from two parts,
namely the direct part Ab (boundary models) and the trans-
formed part As (segment models). The latter is multiplied
by the row transformation matrix Tb from the left before
contributing to the system matrix A. The right hand side
vector b is treated the same way:

A = Ab + Tb · As (20)

b = bb + Tb · bs (21)

A · x = b (22)

Although in principle every model is allowed to add
entries to all components, the assembly module checks two
pre-requisites before actually entering the value: first, the
quantity the value belongs to is marked to be solved (the
user may request only a subset of all provided models) and
secondly the priority of the model is high enough to mod-
ify the row transformation properties. As stated before, the
row transformation is used to complete missing fluxes in
boundary boxes. Since a grid point can be part of more
than two segments, a ranking using a priority has been in-
troduced. For example, contact models have usually the
highest priority and thus their contributions are always used
for completion. All three matrices Ab, As, and Tb and the
two vectors bb and bs may be assembled simultaneously,
so no assembly sequence must be adhered to. In addition,
a forth matrix Tv is assembled which contains information
for an additional variable transformation.

4 The Assembly Module

MINIMOS-NT consists of two separate modules responsi-
ble for assembling and solving linear equation systems:

1. the assembly module which is directly accessed by the
implemented physical models of the simulator, pro-
vides an effective application programming interface,
various transformation algorithms and the preelimina-
tion system. In addition, sorting and scaling plug-ins
can be called.

2. the solver module which is plugged into the assembly
module, is responsible for solving the so-called inner
linear equation system. The module currently used
provides a direct (Gaussian) method and two iterative
solver schemes.

The key demands on the assembly module (class) can
be summarized as follows:

1. The Application Programming Interface provides
methods for

• adding values to the segment system

• adding values to the boundary system

• adding values to the transformation matrix

• deleting equations
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• setting elimination flags

• administration of priority information

2. The row transformation performs a linear combination
of rows to extinguish large entries (see Section 3.4).

3. The variable transformation is used to reduce the cou-
pling of the semiconductor equations. Especially in
the case of mixed quantities in the solution vector, a
variable transformation is sometimes helpful to im-
prove the condition of the linear system. The repre-
sentation chosen here allows to specify fairly arbitrary
variable transformations to be applied to the system.
Basically, a matrix Tv is assembled and multiplied
with the system matrix.

4. The preelimination is required to eliminate problem-
atic equations by Gaussian elimination in order to im-
prove the condition of the inner system matrix. Ma-
trix As consists of fluxes that will (if the control func-
tions are correctly assigned to the variables) satisfy
the criterion of diagonal-dominance that is necessary
to make the linear equation system solvable with an
iterative solver. The transformations and additional
terms imposed by the boundary conditions may heav-
ily disrupt this feature both in structural and numerical
aspects. Some of the boundary or interface conditions
can make the full system matrix so ill-conditioned that
this simply prevents iterative linear solvers from con-
verging.

5. Specific plug-ins are called for

• Scaling: Since a threshold value (tolerance) is
used to decide whether to keep or skip an entry,
the preconditioner used (Incomplete-LU factor-
ization) requires a system matrix having entries
of the same order of magnitude.

• Sorting: Reduction of the bandwidth of a matrix
to reduce the fill-in.

• Solving: Calculate the solution vector of the lin-
ear equation system.

6. After reverting all transformations and backsubstitut-
ing the preeliminated equations, the output of the as-
sembly module is the complete solution vector. In
addition, the right-hand-side vector is returned which
can be used for various norm calculations.

5 Conclusion

We presented the concept and implementation of an ad-
vanced assembly approach successfully applied in the de-
vice and circuit simulator MINIMOS-NT. All conceptional
and numerical features required for assembling and solving
linear systems arising from semiconductor device and cir-
cuit simulation are provided. We developed a formulation
which allows to independently treat segments, boundaries,

and interface models. All fluxes over boundaries are avail-
able as solution variables, which simplifies the formulation
of boundary conditions and circuit equations.

The presented concepts result in superior stability
of MINIMOS-NT without restricting model implementa-
tion and further development. The general approach for
treating boundary conditions yields in combination with
several preconditioning measures diagonal-dominant linear
equation systems well prepared for advanced solver algo-
rithms. As a result, boundary conditions for specific op-
erating points can be directly applied without successively
stepping to the desired value as is very common even in
commercial simulators.
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