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Abstract—We present a computational method for locally
adapted conformal anisotropic tetrahedral mesh refinement. The
element size is determined by an anisotropy function which is
governed by an error estimation driven ruler according to an
adjustable maximum error. Anisotropic structures are taken into
account to reduce the amount of elements compared to strict
isotropic refinement. The spatial resolution in three-dimensional
unstructured tetrahedral meshes for diffusion simulation can be
dynamically increased.

I. INTRODUCTION

In the numerical solution of practical problems of
physics engineering such as semiconductor process and de-
vice simulation, one often encounters the difficulty that
the overall accuracy of the numerical approximation is
deteriorated by local exaltations. An obvious remedy is
to refine the discretization in the critical regions [1].
The question then s
how to identify these Begin Simulation
regions and how to
obtain a good balance

between the  refined Celculeto Timestepn
and unrefined regions
such that the overall

Estimate Error

accuracy is  optimal.
These considerations
clearly show the need
for error  estimators
which can be extracted
a posteriori from the
computed numerical
solution and the given
data of the problem.
The error should be
local and should vyield
reliable upper and lower
bounds. The global upper
bounds are sufficient
to obtain a numerical
solution with an accuracy below a prescribed tolerance.
Local lower bounds are necessary to ensure that the grid
is correctly refined according to an adjustable error using a
(nearly) minimal number of grid-points. As shown in Fig. 1,
during the calculation of a time step a combination of error

NO
End Simulation

Fig. 1. Simulation procedure

estimation and refinement mechanism is necessary to deliver
higher accuracy, if needed, by increasing the spatial resolution.

Il. ANISOTROPIC REFINEMENT

Using strict isotropic meshes for three-dimensional process
simulation is not practicable [2]. The need of calculation time
and the limitation of memory tend to result in anisotropic
adapted meshes which are more manageable. In [3], e.g., the
element shapes are controlled by a tensor-based metric space
for representing mesh anisotropy over the domain.
Anisotropy is defined by three orthogonal principal directions
and an aspect ratio in each direction. The three principal
directions are represented by three unit vectors {, 7, and f and
in these directions the amounts of stretching of a mesh element
are represented by three scalar values A¢, A;;, A¢, respectively.
Using ({, 7, 5) and (A¢, Ay, A¢) We define two matrices R and
S by

& N2 G Ade 00
R=1[& ny ¢ landS:=|0 XA, 0. (1)

By combining matrices R and S, we obtain a 3 x 3 positive
definite matrix M

M := RSRT )
that describes the three-dimensional anisotropy.

The basic refinement step in our algorithm is tetrahedral
bisection which is well investigated by, e.g. Arnold [4].
When bisecting a tetrahedron, a particular edge — called the
refinement edge — is selected and split into two edges by a new
vertex. As new tetrahedra are constructed by refinement, their
refinement edges must be selected carefully to take anisotropy
into account without producing degenerately shaped elements.
In order to identify which edge should be cut, the length of
the edges is calculated in a metric space [5].

A set S with a global distance function (the metric g) which for
every two points x, y in S gives the distance between them as a
nonnegative real number g(x, y) is called the metric space [6].
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The distance function must also satisfy

g(r,y) =0 z=y
g(z,y) = g(y,z) 3)
g(z,y) + gy, 2) > g(x, 2).

In our implementation this metric specially varies over the
domain, and hence the length of an edge depends on its
position. In case the anisotropic length is greater than an
adjustable value, the edge is cut in the middle.

Calculating the length of an edge in a metric space can be
seen as calculating a line integral. In general an arc length
{c is defined as the length along a curve C: (o = fc ds.
M as defined in (2) represents a metric when viewed as
positive definite tensor M = M(z,y,2) over the entire
domain. Roughly spoken, the metric tensor mj;; shows how
to compute the distance between any two points in a given
space. Its components can be viewed as multiplication factors
which must be placed in front of the differential displacements
dz; in a generalized Pythagorean theorem ds? = gy1dx? +
g12dx1dws + gooda3 + -+ -,

The length of a line segment PQ in a metric space is
calculated by [7]

1
trg = / JPQT M(P +PQ)-PQdt ()
0
where M(P +tPQ) is the metric at point P+tPQ,t € [0, 1].

The basic idea of our refinement algorithm is to use the
gradient field of the solution and the given data of the scalar
diffusion problem as stretching direction of the anisotropy
metric. The gradient VC' = grad(C) of a scalar field C =
C(z,y, z) in Cartesian coordinates is given by

or oy 0z
The gradient of a tetrahedral discretization can be calculated
by using linear basis functions [8] applied to the three-
dimensional unit simplex 7. The coordinate transformation

vC k. (5)

r=x1+(T2 — 21)¢ + (73 — 21)n+ (24 — 71)C

y=y1 +y2 —y1)C+ (s —y)n +ya —y1)¢  (6)

z2=2z1 +(22 — 21)C+ (23 — z1)n +(24 — 21)C
allows to map an arbitrary tetrahedron at global coordinates

(z,y, z) to the unit simplex T (cf. Fig. 2) with local element
coordinates (£, 7,¢). In matrix notation this can be written as

-

=34 @

where 7" = ($7y7Z)T' ’I"_i = (xhylazl)' g: (ganvé-)T' and J
denotes the Jacobian

g —T1 X3 — X1 T4 — X1
J=\w—n w-un wu—-un]l. (8)
22 —Z1 23— 21 24— %1

Using linear basis functions on the three-dimensional unit
simplex, which are given by [9]

Ni=1-§-n—¢

Ny =¢

N3 =1

Ny =,

©)

allows a linear approximation over the element in the form

4
k=1

where C}, denotes the scalar value of the solution on vertex
k of the three-dimensional unit simplex T'.

Applying (5) to the linear approximation, given by (10),

results in
—C1 4+ Cy

—C1 4+ Cs
—C1+Cy

for the gradient of the discretization. The gradient is constant
over an element and represents the anisotropic stretching
direction.

VC(&n,¢) = (11)

Fig. 2.

Coordinates transformation.

I11. DIFFUSION

Diffusion is the transport of matter caused by a gradient
of the chemical potential. This mechanism is responsible for
the redistribution of dopant atoms within a semiconductor
during a high-temperature processing step. The underlying
ideas can be categorized into two major approaches, namely,
the continuum theory of Fick’s diffusion equation and the
atomistic theory [10]. We are using the continuum theory
approach which describes the diffusion phenomenon by the
diffusion law:

J=—D -grad(C) (12)

J denotes the diffusion flux, D is the diffusion coefficient or
diffusivity, and C' is the concentration of the dopant atoms.

In general, the diffusion models used in semiconductor
process simulation are strongly nonlinear, because the
diffusion coefficients depend, e.g., on the impurity and point
defects [11]. These dependences also couple the equations
for multiple impurities and point defects. Additionally, more
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complex models include chemical reactions and contain
convection terms. However, for better understanding of our
refinement method we use the linear parabolic diffusion
problem which is given by (12).

IV. ERROR ESTIMATION

Since the vector field VC(&,n,¢) (11) is piecewise
constant, it is obvious that strong variations of the gradient
from one element to an adjacent one yield an approximation
error when compared to the proper continuous gradient field.
This gradient approximation error causes a diffusion flux error
which gives rise to a violation of the law of mass conservation.

According to the discussion of a posteriori gradient
recovery error estimation by Ainsworth [12], the basic idea is
to estimate the error per cell by integrating the gradient jump
of the solution along the faces of each cell.

For the elliptic problem —V (a(z)Au) = f with Dirichlet
boundary conditions, an error estimator for two dimensional
triangulations, proposed by Kelly et al. [13], is

h

ﬂ oK [ on (13)

M =
where h denotes the longest edge of the triangle K and
[w] (@) = lime ot w(r+evy) —lime ot w(r—evg), o €
K, is the jump of w over the triangle K.

Picking up this idea for elliptic problems we use a modifi-
cation for the linear parabolic diffusion problem (12). In our
implementation the error estimation is performed by calculat-
ing the gradient field of the solution in every element over
the domain, where only a small variation in adjacent vectors
is allowed. As shown in Fig. 3, to evaluate the variation, the

Fig. 3.

Error of adjacent gradient vectors.

maximum of the vector norm of the difference

ta= 1Bl = \/(Gi - o) - (G, - Co)

of adjacent gradient vectors G; and Gs is used. For
this procedure only the face-to-face relationship of every
tetrahedron is used. So in this sense every tetrahedron has as
maximum only four neighbors. The length of the difference
vector ¢4 can be seen as measure for the anisotropic stretching
values (1). The refinement anisotropy is now fully described

(14)

by the stretching direction (the gradient field) and the
stretching values (length of the difference vectors).

According to Section | an adjustable lower bound for
the whole discretized domain is necessary to identify which
regions should be refined. As shown in Fig. 1 after error
estimation critical elements are marked for the refinement
procedure if ¢, (14) is greater than the prescribed lower error
bound. The refinement procedure utilizes the local element
gradient as anisotropy direction in combination with (14) to
identify which edge of the marked tetrahedron should be used
for the new vertex.

V. EXAMPLE

To see the essential impact of our refinement strategy we use
a three-dimensional test structure. The underlying initial mesh
(see Fig. 4) is a coarse fairly isotropic mesh which carries a
dopant profile. The white area can be seen as mask, where at
the upturn open part of the structure the diffusion dose N is
kept constant. For an one-dimensional case this can be written
as -
Ng = / C(z,t)dx = const. (15)
0
This diffusion condition is referred to as drive-in
diffusion [14]. Note that the gradient of the concentration C
vanishes at the surface, VC' = grad(C) = 0, and so does
the diffusion flux J (12). The dopant concentration has its
maximum therfore at the step of the structure.

Fig. 5 shows the corresponding gradient field and iso-
surfaces of the dopant concentration. The gradient vectors
are calculated over every tetrahedron according to (11).
The orientation of the gradient is turned towards higher
concentration values and perpendicular to the iso-surfaces
of the dopant concentration. The gradient field varies much
stronger along the short edges of the structure.

To increase the accuracy, refinement is needed only in the
relevant area around the step in the structure. The anisotropy
should care of the variations of the vector field along the
short edge of the structure and should keep the edge length
along the long side.

As shown in Fig. 6, after refinement the edge length along
the long side of the cuboid does not change much, but on the
short side a much higher mesh density arises and the resolution
can be increased. To find a good balance between refined and
unrefined regions under consideration of element shapes its
mandatory also to refine elements which belong to the white
mask structure. Bisecting a tetrahedron by inserting a new
vertex on an edge yields always the division of the whole
patch. Well behaved element shapes demand a smooth tran-
sition between refined and unrefined regions. The algorithm
produces a quite local refinement under consideration of a
desired anisotropic behavior.
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Fig. 5. Gradient field and iso-surfaces (initial mesh).

V1. CONCLUSION

We present a computational method for anisotropic mesh
refinement. The refinement method is based on bisecting
tetrahedrons by inserting a new vertex on a particular edge.
This particular edge is selected according to a specific metric
which is governed by the gradient field of the numerical
solution of the linear diffusion problem and the given initial
data. The refinement is driven by an a posteriori error estimator
which identifies these regions where a higher spatial resolution
is needed. The algorithm shows a local behavior and avoids
ill shaped elements during refinement. The resulting mesh
matches the dopant profile appropriately and a good resolution
of the gradient field is expected. Therefore this refinement
method is also a good choice for complex dynamic diffusion
problems.

-

[

]

[2]

[3]

[4]

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

112

V2

|\

/)

i
VAl

/)

I\

&»‘fﬂ
&ir

X\\S ‘
Y

A

7
i\i"
N

P

\v

‘%

\L
&;‘

A\
V4

[\

A
RN
VA

Fig. 6. Refined anisotropic mesh.
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