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ABSTRACT 

We present a computational method for locally adapted conformal anisotropic tetrahedral 

mesh refinement. The element size is determined by an anisotropy function which is governed 

by an error estimation driven ruler according to an adjustable maximum error. Anisotropy in 

refinement is taken into account to reduce the amount of elements compared to strict isotropic 

refinement. The spatial resolution in three-dimensional unstructured tetrahedral meshes for 

diffusion simulation can be dynamically increased. 

INTRODUCTION 

In the numerical solution of practical problems of physics 

engineering such as semiconductor process and device 

simulation, one often encounters the difficulty that the overall 

accuracy of the numerical approximation is deteriorated by 

local exaltations. An obvious remedy is to refine the 

discretization in the critical regions [1]. The question than is 

how to identify these regions and how to obtain a good 

balance between the refined and unrefined regions such that 

the overall accuracy is optimal. These considerations clearly 

show the need for error estimators which can be extracted a 

posteriori from the computed numerical solution and the given 

data of the problem. The error should be local and should 

yield reliable upper and lower bounds. The global upper 
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Fig.1. Simulation procedure 
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bounds are sufficient to obtain a numerical solution with an accuracy below a prescribed 

tolerance. Local lower bounds are necessary to ensure that the grid is correctly refined 

according to an adjustable error using a (nearly) minimal number of grid-points. As shown in 

Fig. 1, during the calculation of a time step a combination of error estimation and refinement 

mechanism is necessary to deliver higher accuracy, if needed, by increasing the spatial 

resolution.  

ANISOTROPIC REFINEMENT 

Using strict isotropic meshes for three-dimensional process simulation is not practicable 

[2]. The necessity to keep the computational time low, and the limitation of memory requires 

anisotropic adapted meshes. In [3], e.g., the element shapes are controlled by a tensor-based 

metric space for representing  mesh anisotropy over the domain. Anisotropy is defined by 

three orthogonal principal directions and an aspect ratio in each direction. The three principal 

directions are represented by three unit vectors ηξ rr
,  and, ζ

r
 and in these directions the 

amounts of stretching of a mesh element are represented by three scalar values yx λλ ,  and 

zλ respectively. Using ( )ζηξ
rrr

,,  and ( )zyx λλλ ,,  two matrices R and S can be defined: 
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By combining matrices R and S, a 3×3 positive definite matrix M is obtained 

M ≡  RSRT (2) 

that describes the three-dimensional anisotropy. 

The basic refinement step in our algorithm is tetrahedral bisection which is well 

investigated by, e.g. Arnold [4]. When bisecting a tetrahedron, a particular edge - called the 

refinement edge - is selected and split into two edges by a new vertex. As new tetrahedra are 

constructed by refinement, their refinement edges must be selected carefully to take 

anisotropy into account without producing degenerately shaped elements. In order to identify 

which edge should be cut, the length of the edges is calculated in a metric space [5]. 
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A set S  with a global distance function (the metric g ) which for every two points yx,  in 

S  gives the distance between them as a nonnegative real number ),( yxg  is called the metric 

space [6]. The distance function must also satisfy 
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In our implementation this metric varies over the domain, and hence the length of an edge 

depends on its position. In case the anisotropic length is greater than an adjustable value, the 

edge is cut in the middle. Calculating the length of an edge in a metric space can be seen as 

calculating a line integral. In general an arc length Cl  is defined as the length along a curve 

C : ∫=
C

C dsl . M as defined in (2) represents a metric when viewed as positive definite tensor 

),,( zyxMM =  over the entire domain. Roughly spoken, the metric tensor ijm  defines how to 

compute the distance between any two points in a given space. Its components can be viewed 

as multiplication factors which must be placed in front of the differential displacements idx  in 

a generalized Pythagorean theorem 
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The length of a line segment PQ  in a metric space is calculated by [7] 

( )∫ ⋅+⋅=
1

0

dtPQtPQPMPQT
PQl   (5) 

where )( tPQPM +  is the metric at point [ ]1,0, ∈+ ttPQP . 

In case the anisotropic length of an edge exceeds an adjustable limit, this edge is cut in the 

middle. This process is performed for all edges over the tetrahedral domain resulting in a 

mesh, which follows the anisotropy tensor field given by (2). 

The crux of the matter is to find a suitable anisotropic tensor function which describes the 

stretching direction and the stretching factors for a specific diffusion problem. Another 

problem is to find an error estimation which detects those regions where a higher spatial 

resolution is need. An answer to these questions can be found when looking at the 

characteristics of the diffusion problem. 
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DIFFUSION AND DISCRETIZATION 

Diffusion can be viewed as the transport of matter caused by a gradient of the chemical 

potential. This mechanism is responsible for the redistribution of dopant atoms in a 

semiconductor during a high-temperature processing step. The underlying ideas can be 

categorized into two major approaches, namely, the continuum theory of Fick’s diffusion 

equation and the atomistic theory [6]. We are using the continuum theory approach which 

describes the diffusion phenomenon by: 

)(CgradDJ ⋅−=
r

 (6) 

J
r

 denotes the diffusion flux, D  is the diffusion coefficient or diffusivity, and C is the 

concentration of the dopant atoms. In general, the diffusion models used in semiconductor 

process simulation are strongly nonlinear, because the diffusion coefficients depend, e.g., on 

the impurity concentration and the point defects distribution [7]. These dependencies result in 

coupled equation systems for impurities and point defects. Additionally, chemical reactions 

and convection problems have to be considered in the models. However, for better 

understanding of our refinement techniques, the following explanation is based on the linear 

parabolic diffusion problem, given by (6). 

There are mainly two discretization schemes for PDEs in complicated domains namely the: 

finite element (FE) method and the finite volume (FV) (finite box) method. In our diffusion 

simulator we use the Galerkin approach of the finite element method with linear shape 

functions and lumping mass with backward Euler time discretization [8]. In two dimensions 

finite elements and finite boxes give exactly the same discretization, if in the case of finite 

element the mass matrix is lumped. Therefore, the usage of a customary Delaunay mesh 

guarantees that the solution does not contain any non-physical negative concentrations [9]. In 

three dimensions, the situation changes drastically, since the good properties of finite 

elements on a Delaunay mesh are lost [7]. In many practical cases, one cannot rely on a good 

quality of the finite element mesh. Then, additional strategies are pursued: e.g., mesh 

refinement combined with time step reduction. According to standard finite element theory, 

the discretized solution (using the backward Euler-method) will converge to the exact solution 

if meshing granularity and time step size tend to zero. 



TAGUNGSBAND Seite 527 MIKROELEKTRONIK 2003 
 

ANISOTROPY FUNCTION AND ERROR ESTIMATION 

By applying a finite element discretization the gradient of the dopant concentration is 

constant over an element and varies from one element to another. According to the diffusion 

law given by (6) it is obvious that strong variations of the gradient from one element to an 

adjacent one yield an approximation error when compared to the proper continuos gradient 

field. This gradient approximation error causes a diffusion flux error which gives rise to a 

violation of the law of mass conservation. 

According to the discussion of a posteriori gradient recovery error estimation by Ainsworth 

[10], the basic idea is to estimate the error per cell by watching the jump of the solution along 

the faces of each cell. In our implementation the error estimation is performed by calculating 

the gradient field of the solution in every element over the domain, where only a small 

variation in adjacent vectors is allowed. As shown in Fig. 1, if the variation of the gradient 

vectors are to high, the element is marked for the refinement procedure. 

The question about the right anisotropy tensor function is more difficult. One of the best 

choice is to use the HESSIAN matrix of the given dopant profile. The HESSIAN matrix therefore 

must be given analytically which requires a twice continuously differentiable initial profile, 

which is inconvenient. The advantage of using the HESSIAN matrix is that it excellently 

reflects the curvature of the dopant profile and guarantees a good approximation in regions 

with high derivatives. Another possibility is to use the piecewise constant gradient field for 

the stretching directions and the estimated error for the stretching factors. This method is 

more general and shows good practical behavior. 

In the next section we show an example of the gradient field approach where the gradient 

field denotes the stretching directions and the error estimation denotes the stretching factor. 

EXAMPLE 

The left part of Fig. 2 shows the initial coarse mesh which carries the dopant 

concentration. The right part shows the corresponding gradient field and iso-surfaces. The 

gradient vectors are calculated over every tetrahedron. The orientation of the gradient is 

turned towards higher concentration values perpendicular to the iso-surfaces of the dopant 

concentration. The gradient varies much stronger along the short edges of the structure. In this 

example the piecewise constant gradient field is used for the stretching directions and the 
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estimated error for the scaling factors. The 

results of this refinement strategy can be seen in 

Fig. 3. After refinement the edge length along 

the long side of the cuboid does not change 

much, but on the short side a much higher 

density arises and the resolution is increased. 

To find a good balance between refined and 

unrefined regions it is mandatory to take 

element shapes into considerations and to refine 

elements belonging to the upper mesh mask 

structure as a consequence. 
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Fig. 2. Dopant concentration. Initial mesh (left). Gradient field and iso-surfaces (right). 

Fig. 3. Refined anisotropic mesh


