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Abstract

Macroscopic transport models based on the first
six moments of Boltzmann's equation are & npatural
extension to the drift-diffusion model (two moments)
and the various energy-iransport models (three or
four moments). To close the system of equations the
sixth moment has to be expressed as a function of the
lower order moments. We investigate the innence of
the applied closure relation on the numerical proper-
ties of the six moments model comparing three dif-
ferent methods and propose 2 new solution to the
closure problem. We present results of aumerical
solutions of six moments models and compare them
to seif-consistent Monte Carlo data.

Keywords: moments method, closure problem, cumu-
lant, maximum entropy

Introduction

Macroscopic transport models based on the first
six moments of Boltzmann's equation {1} are a natu-
ral extension {0 the well known drife-diffusion mode}
(two moments) and the various energy-transport
models (three or four moments) [2]. In addition to the
solution variables of the energy-transport (ET)
mode!, which are the carrier concentration n = <I»
and the average energy w, = &, the six moments
(SM) model provides w; = «5, which contains addi-
tional information about the distribution function.
The quantity § = (3/5) wyw’ is the kurtosis of the
distribution function and indicates the deviation from
a heated Maxwellian distribution for which § = 1
hoids (for parabolic bands). The knowledge of 8
alfows us to model non-equilibrium processes like
hot carrier tunneling [3] and impact ionization [4]
with improved accuracy within macroscopic trans-
port models.

Six Moments Model

A six moments model (SM) for the description
of hot carrier phenomena within the diffusion ap-
proximation was introduced in [1]. In the diffusion
ftmit [5] the stationary balance and flux equations of
the six moments transport model are [6]:
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with Vi= <o, i = 0; 1; 2, where u is the group ve-
locity. The mobilities w and the relaxation times 1,
and T were taken from tabulated bulk MC data and
modeled as a function of the average energy w, only,
in analogy to [7].

In addition to the SM model we consider the
corresponding BT model, where the equation for w2
is kept but the equation for the energy-ux Vi is closed
with wy = (31307, corresponding to a heated Max-
wellian distribation. This decouples the equation for
wy from the lower order equations and provides an
estimate for w,and thus 8 {11,

The Closure Problem

To close the system of equations the sixth mo-
ment has {0 be expressed as a function of the fower
order moments. We investigate the inuence of the
applied closure relation on the numerical properties
of the six moments modei comparing three methods
from the literature.

First, the use of cumulants instead of moments
for the description of the distribution function [8]
leads to a generalized Gaussian closure. Sccond, the
maximum entropy principle in the diffusion ap-
proximation was applied to solve the closure prob-
lem. Finally, the closure relations proposed in 1] are
considered, where the sixth moment is modeled as 2
function of the variance and the kurtosis of the distri-
bution function using a real number ¢ as parameter,
In the last case the closure problem is reduced to the
choice of ¢. This indeterminacy can be eliminated by
requiring consistency with bulk Monte Carlo data.

Cumudant Closure

From a theoretical point of view probability
distributions are better described in terms of cumu-
lants than in terms of moments. This motivated us to
stady the notion of cumulants and apply it to the
closure problem. Previously, it was suggested in 8]
to use cumylants in the formuiation of semiconductor
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cuimulants in the formulation of semiconductor egua-
tions.

In probability theory and statistics, the cumu-
lants k, of a probability distribution f are given by
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where X is any random variable whose probability
distribution is the one whose cumulants are taken.
The first cumulant is equal to the jogarithm of the
fotal mass of the distribution function (hence zero for
proper probability distribution functions). The second
cumulant is the variance. Cumulants of order greater
than 2 are measures of noanormality. In particular,
the third and fourth cumulanis are related to the
skewness and the kurtosis respectively.

In the cumulant expansion method closure of the
equations in the highest order can be achieved by
setting all higher cumulants to zero. This translates o
a condition on the moments and defines a generalized
(iaussian closure:

wy = (35/6}wg(3ﬁ~2) (4)

Unfortunately, in our numerical experiments the
cumuiant closure only worked for low bias vaiues.
For higher bias values and shorter devices we were
not abie to obtain a solution.

Maximum Extropy

The maximum entropy principle yields, for a
given set of prior information, a density which con-
tains least addiional information in the semse of
Shannon. It is obtained by maximizing the entropy

H(f)=—{flnf-f)
(3

under the constraint that a given set of moments of
the distribution function f assumes prescribed values
[9].

A maximum entropy approach to the closure
probiem was applied by Levermore [10]. A physical
approach based on the maximum entropy principle
was initiated by Anile [11] within the framework of
extended thermodynamics.

The maximum entropy method has been criti-
cized irn [12]. For the semiconductor Boltzmann
equation with parabolic bands the equilibrium states
are located on the boundary of the domain of deffni-

tion of the maximum entropy system. Arbitrarily
close to equilibrium, the maximal characteristic ve-
locity becomes arbitrarily large.

We combined the diffusion approximation with
the maximum entropy closure which gives a lin-
earized version of the maximum entropy closure.

However, in this case, the range of kurtosis for
which the maximum entropy closure exists, is o0
limited and Monte Carlo results cannot be repro-
duced.

It can be shown, that

w9
074 3
i< 5 < 3 {6)

Wa

holds, where the upper bound comes from 2 Maxwel-
lian distribution. The lower bound is reached for a
distribution function of the form exp(-ax® + x°} in the
fimita — €.

Bulk Data Approach

In [1] a family of closures parameterized by a
real number ¢ was introduced. We proposed to use a
generalized Maxwellian closure w; = (35/6)w3,=ﬁ"',
with ¢ an integer in the range [0...31 The sixth mo-
ment is thus modeled as a function of the variance
and the kuriosis of the distribution function.

Stabie implementations were only obtained for
¢=3, resuits for ¢ < 2 showed pronounced oscillations
in the solution. However, the resuits obtained from
c=2, though often unstable, appeared to beiter repro-
duce the MC results. We now take a somewhat dif-
ferent approach: by requiring consistency with bulk
MC simulations we obtain ¢ from a best match of w;
to W, , which gives c=2.7.

Simulation

The previously published results were mainly
obtained by applying these models to Monte Carlo
dats in post-processing steps. Here we present results
of mumerical solutions of six momeats models and
compare thern to self-consistent Monte Carlo data
{SCMC). Relaxation times and mobilities are fitted fo0
bulk Monte Carlo data as a function of the tempera-
ture and the doping,

To investigate the accuracy of the SM model and
its corresponding ET meodel we consider a series of
one-dimensional  n-n-r test-strictures.  Although
these structares are not of practical relevance, they
still display similar features as contemporary MOS
and bipolar transistors like velocity overshoot and a
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mixture of a hot and a cold distribution function in
the 'drain’ region.

The doping concenirations were faken w be
5x10 and 10", The channel length was varied from
1000am down to 50nm while maintaining 2 maxi-
mum electric field of 300 kV/em.

In Fig. 1 we show the relative error of the clo-
sure for bulk and from the simulation result using the
Le=300nm device. H can be seen that for high electri-
cal field the error from the cumulant closure in-
creases, which also expiains the observed bad con-
vergence behaviour when a high bias is appiied.

A comparison of the average velocity Voand the
kurtosis B obtained from the SM and ET models with
the SCMC simulation is shown ip Fig. 2 and Fig. 3
for the Le = H)0nm device. The spurious velocity
overshoot is significantly reduced in the SM meodel,
congistent with previous results [131, while the kurto-
sis produced by the ET model is only a poor ap-
proximation to the MC results.

Despite the fact that SM models provide the kur-
tosis of the distribution function, they do not require
s heated Maxwellian closure in the energy ux rela-
tion. This has a significant impact on the resulting
device currents for channel lepgths smaller 100nam
where the ET models show the well-known overes-
timation of the device currents (cf. Fig. 4). The re-
suits of the SM model, on the other hand, stay close
to the SCMC results which makes the SM model a
good cheice for TCAD applications.

Conclusion

Closure relations derived from theoretical considera-
tions based on analytical distribution function models
({41 or maximum entropy principle} and relations
derived from the cumulants of the distribution func-
tion {8} do not deliver satisfactory resuits, In contrast
the bulk data approach gives a numerically more

robust closure and an accurale Kurtosis, which is a
prerequisite for modeling hot carrier effects.

Since all model parameters are obtained from
butk MC simulations the transport model is fit-
parameter free and leaves us with 'no knobs to turn'
[141. The existence of many fit parameters is a par-
ticular inconvenience inherent in many energy-
transport models {2]. This was found to be essential
for higherorder models since the interplay between
the various parameters is highly complex and the
mumerical stability of the whole transport model
depends significantly on the choice of these parame-
ters. In particular, the MC based model outperformed
Hs counterparts based on analytical mobility models
[11 significantly, both in terms of its numerical prop-
erties and in the guality of the simulation results.
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Figure 1: Relative error of the closure for budk
ool for for the L, = 100nm device,
Error from cumulant closare increases
with high bias. Best fit for ¢ == 2.7,

Figure 3 Comparbion of the kurtosis obtained
from the 8M and ET wmodels with the
SOMC slaslation for the Lo = 100am
device,
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Figure 2: Comparisca of the aversge velocty ob-
tained from the SA snd BT models
with the SCMC simulation for the L, —
1nm devica,
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Figare 4: Comparison of the device curvents ob-
tained from the SM sud BT mndels
with the SCMC simulation for varying
channal lemgih.
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