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ABSTRACT

Performance improvement in CMOS technology can be
achieved by further down-scaling and alternatively by the in-
troduction of new device structures and materials. One of the
most promising candidates is strained Si, since it provides
mobility enhancement both for electrons and holes. This
paper reviews theoretical and experimental achievements re-
ported in recent years. Special focus is put on the gain in car-
rier mobility in strained Si layers. The Monte Carlo method
is well suited to analyze of the transport properties of the
strained Si/SiGe material system and for providing models
for TCAD applications.
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1 INTRODUCTION

In the last years, there has been enormous research in the
area of materials compatible with Si technology and device
structures for improving the speed of VLSI circuits. Strained
Si has emerged as a promising material, since it offers both
higher electron and hole mobility than unstrained Si. Im-
provement by a factor of more than two was both theoreti-
cally predicted and experimentally confirmed.

A strained Si FET structure typically consists of a SiGe
buffer layer grown on Si substrate. The buffer is sufficiently
thick to allow for strain relaxation. A Si layer grown on
top of the SiGe buffer is strained and therefore has dif-
ferent material properties, making it a suitable choice as a
channel material. There are two major types of strained
Si FETs, namely modulation-doped buried channel devices
(MODFET CMOS) and surface channel devices (Strained Si
CMOS or SSCMOS). The MODFET has a more complex
structure and shows a somewhat higher improvement in car-
rier mobility in comparison to surface channel devices.

Strained Si/SiGe FETs exhibit superior performance for
RF applications. Major developments have been reported by
IBM[1,2,3,4,5,6,7, 8] and DaimlerChrysler (DC) [9, 10,
11,12, 13,14, 15, 16, 17, 18, 19, 20], both for p- and n-type
devices. Fig. 1 summarizes reported values for the cut-off
frequencies f1 and fuax In the last years.
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Figure 1: Cut-off frequencies fr (filled symbols) and fax
(open symbols) of strained-Si FETs.

2 PHYSICAL BACKGROUND

Strained Si layers are achieved by growth on SiGe buffers.
Due to the lattice mismatch, a pseudomorphically grown Si
layer on a relaxed SiGe buffer experiences a biaxial tensile
strain, provided that the layer thickness is below a critical
value to prevent strain relaxation. This strain leads to a mod-
ification of both the conduction and valence bands, as shown
in Fig. 2. In the conduction band, the 6-fold degenerate
Ag-valleys in Si are split into 2-fold degenerate Ao valleys
(lower in energy) and 4-fold degenerate A, valleys (higher
in energy). The lower in-plane effective mass of electrons in
the A, valleys and the reduction of inter-valley phonon scat-
tering lead to an enhanced electron mobility. Similarly, the
strain lifts the degeneracy of the light and heavy hole bands
and lowers the spin-orbit band. The change in the valence
band structure results in a reduction of inter-band scattering
between the light and heavy hole bands, and therefore im-
proves the hole mobility. Fig. 3 shows the band alignment of
strained Si relative to relaxed SiGe and unstrained Si. The
figure shows the strain-induced splitting of the conduction
and valence bands, together with the band edge discontinu-
ities, as a function of the germanium content y in the relaxed
SiGe buffer. In the calculations, a linear dependence of the
discontinuities on y has been assumed which gives a good
agreement with reported data [21].

SOLIOJRIOQE T 90TAS(] OUBN] [RUOTIEN




SNDT 2004

=. Symposium on Nano Device Technology 2004

Figure 2: Conduction and valence band splitting in tensile-
strained Si (right) compared to unstrained Si (left).

_ Ay ~0.1y
A

~0.67y ~0.6y T
A2 Relaxed  Unstrained
~1.12- 0.4y | Strained 8i,_Ge, St
1:5;11 I 057y I~0.47y
~0.47y Ih,hh
R

Figure 3: Bandgap alignment (in eV) of strained Si relative
to relaxed Si; _, Ge,, and Si.

3 CARRIER MOBILITY ENHANCEMENT

The benefit of using strained-Si for n-MOSFETs is demon-
strated in Fig. 4. The mobility enhancement factor is de-
fined as the ratio between the mobility in strained Si MOS-
FETs and the mobility in conventional Si MOSFETSs. Fig. 4
shows the mobility enhancement ratio for electrons as a
function of the germanium content y in the SiGe buffer
layer. The figure compares experimental data from Stan-
ford University [22, 23, 24], MIT [25, 26, 27, 28], IBM
[29, 30, 31, 32], Hitachi [33], ERSO/ITRI [34], TSMC [35],
Toshiba [36, 37, 38, 39] and Monte Carlo calculations from
Vogelsang et al. [40], Rashed et al. [41], Takagi et al. [42],
and from [43]. As can be seen in the figure the enhancement
of the electron mobility increases gradually with the Ge con-
tent y for y < 0.2 and tends to saturate for higher values.

It is remarkable that electron mobility enhancement of
more than 50% is observed in a wide range of effective fields
(up to 2 MV/cm) and doping concentrations (up to 6 x 10*®
cm~3) found in modern CMOS devices. Fig. 5 summa-
rizes selected data from Stanford University [23, 24], MIT
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Figure 4: Mobility enhancement ratio for electrons as a func-
tion of the Ge content y in the Si; _,Ge,, buffer layer.

[25, 26, 28, 44], IBM [29, 30, 31, 32], Hitachi [33], Toshiba
[37, 45, 46, 47, 48] for the effective electron mobility in
strained Si as a function of the effective field. The upper
figure shows data for Ge content y < 0.15 in the Si,_,Ge,
buffer layer. The universal mobility curve for electrons in Si
[49] is depicted with a solid line. The dotted line represents
an enhancement ratio of 1.7. The lower figure presents data
for Ge compositions in the range 0.2 < y < 0.4 and com-
pares it again to the universal mobility curve (solid) and to
the same curve multiplied by 2.0.

Fig. 6 shows the mobility enhancement ratio for holes as a
function of the Ge content of the Si; _,Ge,, buffer layer. The
figure compares experimental data from Stanford University
[50], MIT [51], IBM [30, 31, 32], Hitachi [33], Toshiba [36,
39, 46, 47] to Monte Carlo calculations from Oberhuber et
al. [52] and Bufler [53]. As can be seen the enhancement of
the hole mobility increases gradually with the Ge content y
fory < 0.4.

The hole mobility enhancement is observed in a wide
range of effective fields. Fig. 7 summarizes selected data
from ITKGP [54], MIT [25, 51], IBM [31, 32], Hitachi [33],
Toshiba [39, 46, 47, 48, 55], for the effective hole mobility in
strained Si as a function of the effective field. The universal
mobility curve for holes in Si [49] is depicted with solid line.
The dotted line represents an enhancement ratio of 2.0.

4 MODELING AND SIMULATION

To enable predictive simulations using Technology CAD
(TCAD) tools a reliable set of models for the Si/SiGe ma-
terial system is required. Such set has to include models
for the band structure parameters and deformation potentials.
Pseudopotential calculations have been reported in [56, 57].
The transport properties of strained Si or SiGe layers have
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Figure 5: Effective electron mobility in strained Si as a func-
tion of the effective field for Ge content y < 0.15 (upper
figure) and 0.2 < y < 0.4 (lower figure) in the Si;_,Ge,
buffer layer.

been theoretically investigated using Monte Carlo calcula-
tions [40, 43, 58, 59, 60] or near equilibrium solutions to
the Boltzmann equation [56]. A comprehensive set of strain-
dependent models for parameters such as the low-field, high-
field and the surface mobility, energy relaxation time and car-
rier life times for Technology CAD purposes is yet to be de-
veloped. Possible approaches are to further use analytical
models [61] or tabulated Monte Carlo data in a device sim-
ulator [62]. Strain effects on the device characteristics can
be most comprehensively studied by full Monte Carlo de-
vice simulation [63], however, at the expense of increased
CPU-time requirements as compared to conventional TCAD
simulation [64].

5 CONCLUSION

This work reviews carrier transport in strained Si CMOS-
FETs. Device performance is increased due to enhancement
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Figure 6: Mobility enhancement ratio for holes as a function
of the Ge content y in the Si; _, Ge,, buffer layer.
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Figure 7: Effective hole mobility in strained Si as a func-
tion of the effective field for different Ge contents in the
Siy —Gey buffer layer.

of both electron and hole mobilities compared to conven-
tional Si MOSFETs. Improvements by factors of more than
two have been reported. TCAD simulation tools need correct
models of the strained Si/SiGe material system, especially
with respect to carrier transport. Experimental data remain
a basic input for verification of analytical TCAD models.
However, Monte Carlo simulation data with confirmed ac-
curacy can deliver information which is still experimentally
missing.
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