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Abstract. A Monte Carlo method for calculation of the small signal
response of charge carriers in semiconductors is presented. The transient
Boltzmann equation is linearized with respect to the electric field and an
impulse-like perturbation in the field is assumed. The presented formal-
ism allows the impulse response to be explained as a relaxation process,
where two carrier ensembles evolve from different inditial distributions
to one and the same steady state. Using different methods to generate
the initial distributions gives rise to a variety of Monte Carlo algorithms.
Both existing and new algorithms for direct simulation of the impulse
response are obtained in a unified way. Additionally, the special case
of vanishing electric field is considered. Applications to technologically
significant semiconductors are shown. For Gallium Arsenide a resonance
effect occurring at low temperatures is discussed.

1 Introduction

Understanding the Monte Carlo method as a versatile tool to solve integral equa-
tions enables its application to a class of problems which are not accessible by
purely physically-based, imitative Monte Carlo methods. One such class, which
plays an important role in electrical engineering, is the linearized small signal
analysis of nonlinear systems. Whether the linearized system is analyzed in the
frequency or time domain is just a matter of convenience since the system re-
sponses obtained are linked by the Fourier transform. At present, linear small
signal analysis of semiconductor devices by the Monte Carlo method is beyond
the state of the art. However, recently progress has been made in performing
Monte Carlo small signal analysis of bulk carrier transport [1].

2 Basic Equations

Choosing a formulation in the time domain, a small perturbation E1 is superim-
posed to a stationary field Es. The stationary distribution function fs will thus
be perturbed by some small quantity f1.

E(t) = Es + E1(t) (1)
f(k, t) = fs(k) + f1(k, t) (2)
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Inserting this Ansatz into the transient Boltzmann equation and retaining only
first order perturbation terms yield a Boltzmann-like equation for f1 which is
linear in the perturbation E1.

∂f1(k, t)
∂t

+
q

�
Es · ∇f1(k, t) = Q[f1](k, t) − q

�
E1(t) · ∇fs(k) (3)

Compared with the common Boltzmann Equation, 3 has an additional term on
the right hand side which contains fs, the solution of the stationary Boltzmann
Equation. The integro-differential type of equation, 3, is transformed into an
integral form. Assuming an impulse-like excitation E1(t) = δ(t)Eim results in
the following integral equation for the impulse response f1.

f1(k, t) =

t∫
0

dt′
∫

dk′f1(k′, t′)S(k′,K(t′))e
−

t∫

t′
λ(K(y)dy

+ G(K(0))e
−

t∫

0
λ(K(y)dy

(4)

G(k) = − q

�
Eim · ∇fs(k) (5)

The free term of 4 is formally equivalent to the free term of the Boltzmann
Equation. The only difference is that G takes on also negative values, and can
therefore not be interpreted as an initial distribution. Various treatments of the
term G can be devised giving rise to a variety of Monte Carlo algorithms, all
of which solve 4. In [2] G is expressed as a difference of two positive functions,
G = G+ − G−, an Ansatz which decomposes 4 into two common Boltzmann
Equation for the unknowns f+1 and f−

1 . The initial conditions of these Boltzmann
Equations are f±

1 (k, 0) = G±(k) ≥ 0 . In this way the impulse response is
understood in terms of the concurrent evolution of two carrier ensembles.

Using different methods to generate the initial distributions of the two en-
sembles gives rise to a variety of Monte Carlo algorithms. Both existing and
new Monte Carlo algorithms are obtained in a unified way, and a transparent,
physical interpretation of the algorithms is supported.

3 The Monte Carlo Algorithm

In the case that the stationary and the small signal field vectors are collinear, the
stationary Boltzmann Equation can be used to express the distribution function
gradient as

G(k) =
Eim

Es

(
λ(k)fs(k) −

∫
fs(k′)S(k′,k)dk′

)
, (6)

which gives a natural splitting of G into two positive functions. In the following
we adopt the notation that terms which are employed in the respective algorithm
as a probability density are enclosed in curly brackets.
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From (6) we choose the initial distributions as

G+(k) =
Eim

Es
〈λ〉s

{
λ(k)fs(k)

〈λ〉s

}
(7)

G−(k′) =
Eim

Es
〈λ〉s

∫ {
λ(k)fs(k)

〈λ〉s

} {
S(k,k′)
λ(k)

}
dk (8)

where 〈λ〉s =
∫
fs(k)λ(k)dk is introduced in the denominators to ensure nor-

malization. 〈λ〉s is the inverse of the mean free-flight time, which can be seen
immediately when evaluating the average by means of the ’before-scattering’
method. The probability density λfs/〈λ〉s represents the normalized distribu-
tion function of the before-scattering states. Consequently, the product of the
two densities in (8) represents the normalized distribution function of the after-
scattering states. Using the above expression the following algorithm can be
formulated.

1) Follow a main trajectory for one free flight, store the before-scattering state
in kb, and realize a scattering event from kb to ka.

2) Start a trajectory K+(t) from kb and another trajectory K−(t) from ka.
3) Follow both trajectories for time T . At equidistant times ti add A(K+(ti)) to

a histogram ν+i and A(K−(ti)) to a histogram ν−
i .

4) Continue with the first step until N k-points have been generated.
5) Calculate the time discrete impulse response as 〈A〉im(ti) = Eim〈λ〉s

NEs
(ν+i −ν−

i ).

The mean free-flight time must be additionally calculated during the simula-
tion. This algorithm shows in a transparent way the evolution of the P and M
ensembles, as well as the generation of the initial states for those ensembles.

4 Results and Discussion

The following simulation results are obtained by using the new Monte Carlo
algorithm. Typical conditions for electrons in Si are considered as well as a
special carrier dynamics feature, the Transit Time Resonance (TTR) effect [3][4]
for electrons in GaAs. While Si is simulated at 300K, for GaAs the temperature
is reduced to 10K to make the TTR effect clearly visible.

Analytical band models are adopted for both Si and GaAs, accounting for
isotropic and non-parabolic conduction band valleys. For Si six equivalent X-
valleys and for GaAs a three-valley model are included. The used phonon scat-
tering rates can be found, for example, in [5]. Overlap integrals are neglected,
and acoustic deformation potential scattering is assumed elastic.

Fig. 1 and Fig. 2 show the time response of the differential electron energy
∂〈ε〉im/∂Eim and the longitudinal differential velocity ∂〈v〉im/∂Eim for Si at
different field strengths. The response characteristics tend to zero when the two
ensembles approach the steady state. The characteristic time associated with
the relaxation process depicted Fig. 2, namely the momentum relaxation time,
clearly decreases with increasing field. This effect is anticipated since the electron
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Fig. 1. Impulse response of the differential
energy.
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Fig. 2. Impulse response of the differential
velocity.
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Fig. 3. Real part of the differential velocity
spectra.
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Fig. 4. Imaginary part of the differential
velocity spectra.

mobility µ = eτm/m∗ is known to show such a field reduction. Generally, within
a few ps the steady state is reached by the two ensembles.

Fig. 3 and Fig. 4 show the frequency dependence of the differential velocity
obtained by a Fourier transform of the impulse response. The low frequency
limits of the imaginary parts tend to zero, while the real parts tend to the
corresponding differential mobility values ∂〈v〉s/∂Es.

For electrons in GaAs the assumed physical conditions are T = 10K and
Es = 120V/cm. In this case all electrons are in the Γ valley. In Fig. 5 the differ-
ential velocity and differential energy are presented normalized to the respective
initial values. The impulse response characteristics reveal a damped oscillation.
The pattern is pronounced also in the step response functions on Fig. 6 and Fig. 7
, obtained by time integration of the corresponding impulse response functions.

The pattern appears to be independent of the concrete physical quantity,
which leads to the conclusion that a peculiarity of the carrier dynamics is re-
sponsible for the behavior. The chosen physical conditions determine a peculiar
behavior of the electrons already in the steady-state. Since the acoustical phonon
scattering is low (below one scattering for 100ps), the electrons are accelerated
by the field until they reach energies above the polar-optical phonon energy
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Fig. 5. Impulse response of the normalized
differential energy and velocity.
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Fig. 6. Step response of the differential ve-
locity.
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Fig. 7. Step response of the differential en-
ergy.

0 0.01 0.02 0.03 0.04 0.05
energy (eV)

0.0

0.5

1.0

1.5

di
st

rib
ut

io
n 

fu
nc

tio
n 

(a
.u

.)

0ps

8ps8ps

0ps

M
P

Fig. 8. Energy distribution of the P and
M ensembles at t = 0 and t = 8 ps.

(0.036 eV). Above this energy the scattering rate for phonon emission increases
rapidly, so that the electrons, penetrating the phonon threshold are intensively
scattered back to energies close to zero.

The effect can most conveniently be discussed in the energy domain. The
field impulse instantaneously creates a perturbation, represented by ensembles
P and M with initial distributions G+ and G−, respectively. Fig. 8 shows the
distributions as two peaks, located close to E = 0 and above the phonon thresh-
old. The M ensemble is accelerated by the field towards the phonon threshold.
The P ensemble is intensively transferred within less than two ps back to low
energies and is then accelerated by the electric field.

The peaks in the initial distribution broaden towards the steady state distri-
bution which is reached after about 80 ps in the given example. The M ensemble
undergoes an evolution similar to that of the P ensemble, however with same
delay, which is responsible for the oscillation in 〈A〉im(t). If the two distributions
were equivalent at a certain time, they would oscillate synchronously for later
times and no oscillation in the impulse response would show up.
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5 Monte Carlo Algorithms for Zero Field

The carrier mobility for vanishing field is an important parameter, characterizing
the ohmic transport regime. The conventional Monte Carlo method [5] cannot
be applied because in the limit Es → 0 the carrier mean velocity tends to
zero while the stochastic velocity component due to thermal excitation keeps its
value. Neither can the small signal algorithm presented in the previous section be
applied, as the expressions 7 and 8 are singular at Es = 0. This is a consequence
of the principle of detailed balance, which makes the scattering term in the
Boltzmann equation vanish in thermodynamic equilibrium. However, in that
case the stationary distribution function is known to be the Maxwell-Boltzmann
distribution, f0, which allows analytical evaluation of 5.

G(k) =
qEim · v(k)

kBT0
f0(k) (9)

As in the previous section, it is convenient to use the before scattering states of
some main trajectory, which have distribution λf0/〈λ〉.

G(k) =
qEim〈λ〉
kBT0

· v(k)
λ(k)

{
λ(k)f0(k)

〈λ〉
}

(10)

This expression gives rise to the following Monte Carlo algorithm.

1) Follow a main trajectory for one free flight and store the before-scattering
state k.

2) Compute the weight w = v(k)
λ(k)

3) Start a trajectory K(t) from k and follow it for time T . At equidistant times
ti add wA(K(ti)) to a histogram νi.

4) Continue with the first step until N k-points have been generated.
5) Calculate the time discrete impulse response as 〈A〉im(ti) = qEim〈λ〉

kBT0

νi

N .

This algorithm can be specialized to the evaluation of the static zero-field mobil-
ity. The latter is given by the long time limit of the velocity step response, which
is the time integral of the velocity impulse response. This requires integration
of the velocity over a secondary trajectory for a sufficiently long time. However,
time integration can be stopped after the first velocity randomizing scattering
event has occurred, because in this case the correlation of the trajectory’s initial
velocity with the after-scattering velocity is lost. Since in thermodynamic equi-
librium the before and after-scattering distributions are equal, the secondary
trajectories can be mapped onto the main trajectory.

The following algorithm is not restricted to the longitudinal mobility compo-
nent. Instead, the complete mobility tensor can be evaluated. Note that 〈vi〉 =∑

j µijEj .

1) Set ν = 0, w = 0
2) Follow a main trajectory for one free flight and store the after-scattering state

k.
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3) Compute a sum of weights: w = w + vj(k)
λ(k)

4) Select a free-flight time tf = − ln(r)
λ(k) and add time integral to estimator:

ν = ν + wvitf .

Alternatively, use the expected value of the time integral: ν = ν + w vi

λ(k)
5) Perform scattering. If mechanism was isotropic, reset weight: w = 0.
6) Continue with the second step until N k-points have been generated.
7) Calculate component of zero-field mobility tensor as µij = q〈λ〉

kBT0

ν
N

Especially the diagonal elements can be calculated very efficiently using this
algorithm. Consider a system where only isotropic scattering events take place.
Then the product wvi is always positive, independent of the sign of vi. Therefore,
only positive values are added to the estimator, which leads to low variance.

The zero-field mobility of electrons in Si has been calculated as a function of
the doping concentration. The frequently used statistical screening model due
to Ridley [6][7] overestimates the mobility as shown in Fig. 9. Agreement with
experimental data can be achieved by introduction of three fitting parameters
[8]. The Monte Carlo algorithm has been used in conjunction with an automatic
curve fitting procedure.

6 Conclusion

A linearized form of the transient Boltzmann Equation is used to investigate
the small signal response of charge carriers in semiconductors. Assuming an
impulse-like perturbation in the electric field the linearized equation is split into
two common Boltzmann Equations, which are solved by the ensemble Monte
Carlo method. In this way the impulse response is understood in terms of the
concurrent time evolution of two carrier ensembles. Furthermore, a Monte Carlo
algorithm for the calculation of the impulse response for vanishing electric field
is given. From this algorithm another one is derived, which is specialized to the
calculation of the zero-field mobility.
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