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Abstract—We deal with problems arising in the coupling of
process and device simulators. It is analyzed what kind of data and
algorithms such simulations are based on. An overview of existing
technology computer-aided design data models is given. A generic
object-orienteddata model suitable for three-dimensional process
and device simulations, the so-called WAFER-STATE-SERVER
is presented. By taking advantage ofobject-orientedabstraction
mechanisms, key tasks in the coupling of simulators are relocated
from the simulator into the WAFER-STATE-SERVER. The new
data model allows an efficient data exchange between existing
process and device simulators. It is capable of managing geome-
tries of different dimensions, and handling grids and distributed
quantities stored therein. The data model also defines algorithms
to perform geometrical operations as they occur in topography
simulations. Three process simulators based on the new data
model were developed, one of which is presented in this work.

Index Terms—Microelectronics, process simulation, semicon-
ductors, wafer state.

I. INTRODUCTION

T ECHNOLOGY computer-aided design (TCAD) simula-
tion programs are well accepted in the semiconductor in-

dustry. They present an invaluable help in improving existing
technologies and can drastically reduce development time for
new emerging technologies and downscales. Many tools are
available today, some of those come from universities, others
are developed and distributed commercially. A tool is usually fo-
cused on a particular process step. To simulate a whole semicon-
ductor fabrication process flow a rigorous coupling of individual
simulators is inevitable. Ideally, it should be possible to choose
among all of the tools available on the market and use them as
needed. In practice, however, the necessary tool integration is at
best possible among the tools of one vendor. A simple coupling
of simulators is very complicated due to a missing standardized
data model.

We present a newobject-orienteddata model for the TCAD
field. This data model, the so-called WAFER-STATE-SERVER,
gives a unification of what data is common to all tools. The data
model aims at the mentioned integration of process and device
simulators. The data model is realized as a C++ class library and
deals with several aspects of TCAD simulations. These aspects
includeI/O operations,meshing, andalgorithmslike the extrac-
tion of interfaces between two simulation domains. By taking
advantage of theobject-orientedprogramming paradigm, key

Manuscript received July 4, 2002; revised December 10, 2002. This paper
was recommended by Associate Editor W. Schoenmaker.

The authors are with the Institute for Microelectronics, Technical University
of Vienna, A-1040 Vienna, Austria (e-mail: binder@iue.tuwien.ac.at).

Digital Object Identifier 10.1109/TCAD.2003.816219

tasks in the coupling of TCAD simulators can be handled di-
rectly in the library (as opposed to being handled in the simu-
lator). One advantage of the new approach is that the tool devel-
oper is partly relieved from the integration task,1 which means
that more emphasis can be put on the physical problem to solve.
The usage of well-defined interfaces brings another advantage,
namely, the possibility to easily exchange algorithms without
breaking the application code (the simulator).

The final target of the tool integration aims at simulating a
whole flow of a semiconductor fabrication process where tools
are exchangeable. It should be possible to exchange a simulator
performing a specific step with any other suitable simulator that
is available.

Before the new data model is developed, we will take a
glimpse at existing solutions. Many solutions known to the
author that are used in commercial or university TCAD suites
more or less lack a clean,object-orienteddefinition of a data
model from the point-of-view of the TCAD tool developer.
Instead, the data model is reduced to the file level, where a file
format and a set of data access libraries are used to read and
write data.

A. Viennese Integrated System for TCAD Applications (VISTA)

VISTA is a framework that was designed to meet all needs of
a TCAD user. VISTA introduced three levels of abstraction.

• Task Level: It provides an extension language (TCAD
shell) that allows for solving high-level engineering tasks
(e.g., optimization).

• Tool Level: It provides the tools to carry out the simula-
tions and also the necessary integration of that tools.

• Data Level: It takes care of the representations of the data
that are needed in TCAD simulations and copes with the
problem of data exchange.

The data level of the VISTA system is realized as the profile
interchange format (PIF) file format and a set of supporting li-
braries [1], [2]. It is intended as a database for TCAD simula-
tion data. The PIF implementation provides an ASCII and bi-
nary representation of the data and a conversion tool to convert
data between the two representations. The ASCII representation
(intersite representation) is used to transfer PIF files between
different architectures,2 and is based on a proposal by Duvall
[3]. The binary representation provides fast access to the data
and was intended to exchange data between tools (intertool rep-
resentation).

1The file format for an input file only needs to be selected, not implemented.
2This is to handle different byte-ordering schemes and the differences be-

tween 32- and 64-bit CPUs.
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PIF is designed in a strict bottom-up fashion. The PIF appli-
cation layer (PAL) does not have any semantical constraints on
the data; only the pure syntax of the file is mapped. There is no
definition of the status of a WAFER before and after a simula-
tion run. Instead, the interpretation of the data was delegated to
high-level libraries or directly to the simulation tools. As a con-
sequence, several incompatible interpretations were evolving
over the time the PAL was integrated with various tools. Due
to the bottom-up design, semantic constraints on the data (the
PIF cookbook) were introduced at a time where tools were al-
ready fully integrated with the PAL and could not be changed
easily. Moreover, a great percentage of the developed functions
are not used in any of the libraries and tools that are in existence
today.

B. DF-ISE

DF-ISE [4] is the file format of the TCAD suite of the ISE
software company [5]. As with PIF, a binary and ASCII repre-
sentation is available although the binary representation is only
capable of storing floating point and integer values. Not all of
the data are stored in a single file; instead DF-ISE distinguishes
several different file types. These file types are

• layoutgeometry for patterning operations;
• cell structures used for three-dimensional (3-D) solid

modeling;
• recursive-tensorcontains tensor product grids;
• boundarycontains a boundary description of the simula-

tion domain;
• grid holds an unstructured grid of the simulation domain;
• datasetthis file type holds optional quantities that are

stored on a grid or boundary. A dataset file is only useful
in conjunction with a grid or a boundary file. Only scalar
and vector values are supported.

• propertyholds a material database that is used by all ISE
tools.

Depending on the application at hand, only a subset of the data
is retrieved from file. Data in a DF-ISE file are organized in a
sequence of blocks which in turn can contain other blocks. A
restriction of the DF-ISE file format is that a grid file may con-
tain only one global grid that comprises the whole simulation
domain. Interfaces between different simulation regions (e.g.,
semiconductor oxide) must be boundary-conforming.

The starting geometry and the photo lithography data (masks)
are stored in a layout file. This file is required as input for the
process simulator (DIOS).

C. TMA Interchange Format (TIF)

TIF is the file format of parts of the Synopsys TCAD suite.
The name of the file format comes from the name of the com-
pany (TMA) that originally offered the tools. The products of
TMA, however, were first incorporated by Avant!, and later
by Synopsys [6]. The two-dimensional (2-D) process simulator
TSUPREM-IV[7] and the 2-D device simulator MEDICI [8] are
based on this file format. Only an ASCII representation of TIF
exists, which results in large files and, thus, in slow data ac-
cess if complex WAFER structures are to be stored. Although
the two mentioned simulators in principle use the same syntax

to store the data on a TIF file, those files are not semantically
compatible. Instead, TSUPREM-IV supports an option to write
a MEDICI-compliant TIF file.

The successor of the 2-D TSUPREM-IV and MEDICI simu-
lators is the 1-, 2-, and 3-D TAURUS [9] TCAD suite. TAURUS
is comprised of a set of individual tools. Among others, these
tools include TAURUS-Device and TAURUS-Process. The
TAURUS-Process tool supports the creation of input descrip-
tions suitable for TAURUS-Device.

D. Silvaco

The Silvaco [10] TCAD suite consists of the process-simula-
tion module ATHENA [11] and the device-simulation module
ATLAS [12]. ATHENA is limited to the simulation of 2-D pro-
cesses. Data exchange is also performed via a file.

E. Semiconductor Wafer Representation (SWR)

The SWR [13] is based on anobject-orientedclient server
architecture that consists of a set of C++ class definitions. Con-
ceptually, the interface of the SWR is split into a field and a
geometry server. The geometry server describes the boundary
information of the WAFER and is used to represent and manip-
ulate material regions. It supports three basic operations:

• the creation of geometric regions from inputs like a list of
points or a mesh;

• it provides topological functionality like querying the list
of edges incident to a point;

• it defines Boolean operations on geometries to support to-
pography simulations.

The field server defines data structures to handle grid-related is-
sues and to represent and manipulate distributed quantities (e.g.,
doping profiles, stress, etc.) stored on grids. Apart from simple
mesh construction mechanisms, the field server provides inter-
polation functionality. The SWR 1.0 specification of the field
server is limited to supporting 1- and 2-D meshes.

In the prototype implementation of SWR 1.0, the geometry
and field servers are realized as separate processes. Clients con-
nect to a server via the sockets interface and exchange data via
shared memory. File converters are used to integrate existing
simulators (e.g., SUPREM-IV [14]). A notable drawback of the
SWR specification is that the definition of a general WAFER-
STATE is missing.

To overcome the limitation to two spatial dimensions, a 3-D
implementation of an SWR field server was presented in [15].
Apart from the supported dimension, this implementation dif-
fers from the prototype in that it allows one to choose whether
the servers run as separate processes or are linked to the client.3

The author, however, does not know of any tools that are inte-
grated with this implementation (nor are any applications refer-
enced in the paper).

F. Forest

From the author’s point of view, the work by Sahulet al.
[16] presents the most advanced approach to integrating process
simulation tools in two spatial dimensions. It defines three basic
models:

3This means that clients run in the same process space as the servers.
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• geometry server: This module is most notably capable of
persistently storing geometries on a file, moving the sur-
face of a geometry, and repairing geometries that became
invalid during a simulation.

• grid server: This module is capable of generating a grid on
a given geometry. It defines methods to adaptively refine
a grid, move a grid, and repair corrupted grids.

• surface mesh server: This module is capable of generating
a surface mesh of the geometry, which is used for moving
boundary problems.

Interaction between the three servers is necessary if a certain
process step introduces an inconsistency. For example, for an
oxidation simulation, the geometry has to be updated after the
grid was moved by the grid server. If the geometry server detects
inconsistencies in the geometry, these are repaired, a new grid
is computed, and the grid server is updated in turn.

Two tools that were integrated with Forest are a restructured
version of the SUPREM-IV process simulator, and the program
SPEEDIE [17] that is used for etching and deposition simula-
tions.

Although the interface of Forest is dimension independent,
an implementation for three spatial dimensions is not available.

II. DATA MODELING ASPECTS

If we look at the needs from a TCAD user’s perspective, then
there are several major issues to take into account. According to
[18], three keys to a successful operation of TCAD are

• prediction: TCAD users expect the tools to predict how a
yet-to-be-developed technology will perform.

• fast calibration: A calibration must be finished before a
certain process changes and whenever a new version of
the software is released.

• importance of the grid: Process and device simulations
are very sensitive to the underlying simulation grid. Errors
that can lead to a wrong result might be introduced if no
attention, or not enough, is paid to the grid.

We would like to add another point to the above list of issues,
namely, the importance of tool interoperability. There has been
a strong user-driven urge to support file wrappers that convert
data between the file formats of different vendors. Users would
like to compare the results of different simulators and also to
freely interchange tools in a process flow simulation.

To date, there is no accepted standard regarding the data cru-
cial to carry out coupled TCAD simulations. As a matter of fact,
existing solutions are based on a file format instead of a data
format. The difference between file and data formats lies in the
algorithms that are associated with data structures. Per defini-
tion, a data structure is defined via its representation (data in
memory, data on disk) and a set of operations that are valid on
that representation. On the other hand side, a file is only a means
to persistently store data on a computer, thus, it is just one rep-
resentation of the data.

To make things worse, the existing file formats are usually not
even semantically compatible with each other. As some of the
file formats are optimized for a certain purpose like, e.g., device
simulation, they are not intended to pass data among process
simulators. As a consequence, there does not exist a rigorous

solution to couple existing tools in a way such that one particular
process simulation step could be exchanged by another. Thus,
if interoperability of such tools is desired, the only solution for
the user is to use data wrapping tools to achieve at least a partial
compatibility on the file level.

The above sketched issues lead to the following requirements
that must be met by a TCAD data model.

A. Requirements for a TCAD Data Model

The four major aspects that need to be dealt with in a TCAD
simulation from the tool’s perspective are

• Persistent storage of simulation data. The tool must store
the results of a simulation for later reference (visualiza-
tion, input for another simulation) and the user does not
want to bother with file format specifics.

• Handling of gridding steps. The tool needs a standardized
way to interact with different gridding tools. It must be
possible to switch to another gridding algorithm with the
least possible effort.

• The user needs support to extract topological information,
to manipulate the underlying geometry after a topography
step.

• All data structures and algorithms offered by the data
model should be available in all three geometrical dimen-
sions.

The four requirements above mean that the identified algorithms
are used exclusively via interfaces rather than being tightly inte-
grated with a simulator. It is delegated to a library (the WAFER-
STATE-SERVER) to provide one (or more) implementations for
a certain interface. This separation of interface and implemen-
tation makes it possible to seamlessly use other algorithms from
the simulator. The advantage here is clearly that the simulator(s)
need not be changed as long as they adhere to the defined inter-
faces. A certain implementation of an algorithm like, e.g., the
file format in which the input file is stored, can be selected at
runtime (e.g., by passing an argument on the command line).

The observed semantical incompatibilities in existing solu-
tions are often due to oversimplifications. On the one hand,
such simplifications can help in managing the data for one kind
of simulator, but complicate the generation of the data itself
on the other hand side. One such simplification is to enforce
boundary-conforming grids on the data stored on a file as it is the
case with the DF-ISE approach. Another (design-related) sim-
plification is the lack of so-called WAFER-STATE semantics.
A WAFER-STATE defines a state between any two simulation
runs that are carried out in the simulation of a process flow. It is
this definition that is most important to a tool, and yet, no stan-
dard has evolved so far.

In the following, we will focus on the data structures and the
API that were developed to support the tool developer with the
desired operations. All of the above-defined requirements are
met and reflected in the API. The API and data structures are
referred to under the term WAFER-STATE-SERVER. Note that
in our application, the term “SERVER” does not denote a tradi-
tional client/server architecture as it is used in, e.g., Web-based
applications, but is rather meant to denote the set of classes that
comprise and enforce the WAFER-STATE definition.
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Fig. 1. Data flow for a mixed-mode device simulation. In this example, geometry and dopant concentrations from two wafers (Wafer 1 and Wafer 2) are taken as
input to the device simulator. The names of the devices and contacts that are connected are stored in a separate file, the input-deck. This file also contains simulator
specific options like the models to use in the simulation or if and what quantities have to be stored on the optional output WAFERs.

B. WAFER Description

Commonly, the term “WAFER” denotes a circular disk that
serves as base material in the semiconductor fabrication process.
Hundreds of process steps are performed on a WAFER to create
devices like transistors or diodes. These devices are arranged in
functional units, so called dies, each comprising an integrated
circuit (IC). Depending on the functional complexity of the IC,
the used process technology, and the size of the WAFER disk,
there are up to several thousand dies that are produced on one
WAFER. This amounts to a gigantic number of individual de-
vices. In TCAD simulations, only a very small number of de-
vices or even just a fraction of a single device is considered.
Compared with a circuit or logic simulator, a TCAD simulator
operates at a very low level of abstraction. Therefore, in the
TCAD field, the term WAFER is used to denote the very small
fraction of a WAFER disk that is used during TCAD simula-
tions.

A TCAD conform WAFER description contains the geom-
etry (topography) of the device structure, and quantities as they
are used by the simulator models (e.g., dopant concentrations,
forces, stress, etc.). Boundary information is used to identify
parts of the surface of a simulation domain, and is necessary
to define the geometrical region for boundary conditions (e.g.,
contacts of a device). A boundary information may also hold
properties like, e.g., the material type of a contact or quantities
like interface charges between two regions.

C. Simulator Control

Additionally, to the definition of geometry and grid informa-
tion and the quantities associated with a grid or a geometry, a
simulator needs some extra information. This information in-
cludes

• the definition of the data flow (i.e., the names and file
formats of the persistent input and output WAFERs);

• the definition of the models to apply and the quantities to
treat in the simulation respectively;

• the definition of simulator internal parameters like, e.g.,
the time step length, the number of time steps, or the iter-
ation scheme that is to be used in the equation solver;

• a material database;
• some simulations require the definition of circuitry infor-

mation.
This additional information is either stored in an extra file, the
so-called input-deck, or passed on the command line of the
simulator, if applicable (depending on the number of parame-
ters). Sometimes, a combination of command line options and
input-deck is useful (e.g., to supply input and output file names
on the command line, but use an input-deck for model parame-
ters).

An input-deck database (IPD) that is capable of holding an
arbitrary number of (simulator specific) parameters was devel-
oped at the Institute for Microelectronics [19].

This input-deck database is also used to define circuitry infor-
mation necessary to run mixed-mode device simulations with
the device simulator MINIMOS-NT [20], [21]. In the case of a
mixed-mode simulation, several input WAFERs are used. Con-
nections between the WAFERs (i.e., the circuitry information)
are established by identifying the contacts of the devices. Fig. 1
depicts the data flow for the case of a mixed-mode device sim-
ulation.

D. Classification of Process Steps

In order to design a library that meets all of the requirements
defined above, the different kinds of process steps must be iden-
tified. In a coarse differentiation of simulation steps one could
think of the class of simulators that only manipulate or read
quantities (diffusion, implantation, device simulation), versus
the topography manipulating tools (etching, deposition, oxida-
tion).
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Fig. 2. Concept of the WAFER-STATE-SERVER. The three major problems existing in a TCAD data model are expressed by means of several dimension
independent interface classes. The meshing interface consists of classes and methods to define a geometry, to start the gridding mechanism and to retrieve the
generated grid elements. TheI/O interface comprises a set of classes and methods to retrieve data from and to store data on a persistent WAFER, respectively. The
core interface contains data structures to hold WAFER data and methods to perform data manipulations.

The first class of tools does not modify the underlying geom-
etry at all. Instead, distributed quantities are used to perform
a computation. A demand on the data model is to provide a
boundary conforming grid.

Topography simulators need a geometrical view of the data.
They need boundaries of the WAFER to ambient and interfaces
between different regions. The topography is altered during such
a process simulation. A deposition step will introduce com-
pletely new regions. In an etching step, existing regions can
completely vanish, can be split into several regions, or can be
merged into a single region. During an oxidation process, parts
of the silicon region will turn into oxide. Some simulators also
need information stored on a per region basis (e.g., the material
type), the so-called properties, or distributed quantities (e.g., for
simulating diffusion-coupled oxidation).

Among the above classifications, the topography simulators
clearly impose the most complex data manipulations on the
WAFER data structures, since they modify the underlying
geometry.

III. WAFER-STATE-SERVER

The major requirements, as outlined in the previous section,
are attacked by providing the tool developer with a class library,
the WAFER-STATE-SERVER. The library is realized as a set of
modules, each representing one of the analyzed problems (grid-
ding, I/O, WAFER algorithms). The core data structures that
hold the data make use of this modules. Fig. 2 gives an overview
of the modules and how they are used in the core-data structures.
The library is designed adhering to theobject-orientedpara-
digm, by strictly separating the interface to a module (API) from
its implementation. This ensures that the implementation, i.e.,
the algorithm of a given problem, is completely decoupled from
the application program and can easily be exchanged without
the need to change the application itself. The WAFER-STATE-

Fig. 3. Public interface classes of the WAFER-STATE-SERVER.

SERVER provides a dynamic instantiation mechanism that al-
lows one to easily implement a command line selectable choice
of available modules (e.g., gridder orI/O module).4 Fig. 3 gives
an overview of the interface classes that are visible from the ap-
plication.

A. Data in a WAFER

There are two representations of the WAFER data. One com-
prises objects that are stored in memory (core data structures),
and in the other, data are stored persistently on disk. Fig. 4 de-
picts the persistent data representation of a WAFER. Data are
organized in sections. Some of the sections recursively contain
subsections. There are two sections that must be present at the
top level. These are the Segments and the Points section.

The points section contains the coordinates of all points of
the wafer, it is a global list of points. All grid elements share
this point list. This prevents the storage of redundant coordinate
information.

The segments section may contain an arbitrary number of
so-called stand-alone grids and, also, an arbitrary number of at-
tributes, boundaries, and properties. Attributes are used to store

4Depending on the runtime environment (dynamic linker, libraries), dynamic
instantiation is directly performed via the dl interface (dlopen) or a program-
matic construct (switch). In the latter case, the instantiation is not really dynamic
in the narrower sense, because all possible implementations must be known at
compile time. The mechanism is, however, transparent to the application.
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Fig. 4. Data in a WAFER.

distributed quantities. A distributed quantity is always defined
on a grid, by defining a value for each grid point. The list of
attribute values is separated from the grid. This makes it pos-
sible that one grid is shared among an arbitrary number of at-
tributes. A boundary holds an optional number of attributes and
properties. Properties are like attributes but do not reference a
grid. They are constant over the whole segment. Properties are
used to store information like the material type of a segment.
Stand-alone grids are optional in case at least one distributed
quantity is defined on the segment, but must be present (to define
the geometry of a segment) otherwise. A segment that consists
only of the pure geometry information might be created from a
topography simulator or from any kind of geometry modeling
tool.

B. I/O Module

The I/O module is split into two parts, the reader and the
writer. Each part consists of several interface classes that are

used to traverse the data. The implementation of these classes
takes care to handle data transfer to or from the underlying file
or database.5 This mechanism ensures transparency of the actual
file format which, thereby, provides the basis for the data inter-
change among existing simulators. Fig. 5 depicts the algorithm
that is used to read data from a persistent WAFER into memory.
The data are retrieved hierarchically. All methods that start with
the name next are iterators over the contents of a section. They
return an instance of an object or indicate the end of a section.
The sequence of the method calls is mandatory and must occur
as described below. The actual reading process is started with an
object of type reader. Each invocation of the nextPoint method
reads exactly one point from the persistent data source. A call to
the nextSegment method returns an object of type RdSegment or
indicates the end of the WAFER data. The method nextGrid of
the RdSegment class returns an object of type RdGrid for each
stand-alone grid. The method nextWafGridEl retrieves a grid el-
ement. For each attribute of a segment, the method nextAttribute

5The actual location (file or database) of the data is transparent.
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Fig. 5. I/O reading algorithm.

returns an object of type RdAttribute. This class contains a pred-
icate isConstAttr that must be used to determine whether the at-
tribute is stored on a grid. For distributed quantities the method
nextWafGridEl must be used to retrieve the grid elements of the
attribute. Note that the same grid may be shared by several at-
tributes, therefore, a grid may only be retrieved at the very first
occurrence. The predicate isNewGrid of the RdAttribute class
indicates the first occurrence of a grid. After the last attribute
was retrieved, the method nextBoundary must be invoked for
each stored boundary. Since boundaries are quite similar to at-
tributes, they are also handled by the RdAttribute interface class.

The algorithm to make data persistent is realized in a similar
fashion. Again, several interface classes must be used hierarchi-
cally.

Presently, the following implementations for theI/O module
exist.

• DF-ISE: The textual representation of the file format of
the ISE company is supported. An implementation for a
reader and a writer is available.

• FEM: This is the underlying file format used in the
SMART ANALYSIS PACKAGE (SAP) [22]. SAP is
capable of extracting capacities, resistances, and induc-
tances of interconnect structures, and to perform thermal
analysis of interconnect structures. Only the Reader is
implemented.

• WSS: This is a recently developed ASCII file format.
Its main purpose is to allow easy-by-hand generations
of simple WAFER structures. Both reader and writer are
supported.

• HDF: This file format was also developed recently. It is
intended as the native file format for all simulators devel-
oped at the Institute for Microelectronics. It supports data
compression, parallelI/O, and is binary compatible to all
major computer architectures available today. Both reader
and writer are implemented.

Fig. 6. Gridding algorithm.

C. Gridding Module

The gridding module allows to handle the creation of grids.
The API consists of a part that is used to define the geometry
and a part to retrieve the grid elements. Fig. 6 depicts the whole
gridding algorithm. First, all points of all of the segments need
to be defined. This also includes the points that are not part of
the hull of a segment (inner points). The points are numbered
consecutively in the way they are inserted. In the next step, the
boundaries of all regions are defined. This is done by adding one
boundary element at a time. For a 3-D gridder, a boundary ele-
ment consists of three point references (surface triangle), a 2-D
gridder expects two point references (surface line). The bound-
aries are numbered in the same way as the points. As a last step,
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the boundary elements that define a segment must be identi-
fied. Each segment is defined through a list of boundary element
numbers and a unique user defined number. When the grid ele-
ments are retrieved, each element contains the segment number
of the segment it belongs to. As a last step, the actual gridding
process must be initiated by calling the start method. Once this
method returns, the gridding process is finished and the gener-
ated points and grid elements can be retrieved from the gridder
data structures.

The interface is realized in a completely dimension-indepen-
dent way. The data structure of the returned grid element has a
fixed size (four point references, the number of valid point ref-
erences, and the segment number). The geometrical dimension
of the grid element is indicated by the number of valid point ref-
erences.

Note that in order to implement the WAFER-STATE-
SERVER gridding interface for a certain gridding algorithm,
no access to the source code of the algorithm is necessary. A
library that provides a well-documented API will suffice for
that purpose. Currently, two implementations of the gridding
interface are available. These implementations are the 2-D grid
generator TRIANGLE and the 3-D grid generator DELINK.

1) TRIANGLE: TRIANGLE was developed at Carnegie
Mellon University [23]. It supports the generation of
high-quality Delaunay triangulations with a number of
tuning parameters to define quality criteria. It is implemented
in the C programming language. The software is available as a
stand-alone program and as a library. To integrate TRIANGLE
into the WAFER-STATE-SERVER the library version was used
and a C++ wrapper class was implemented to hide implementa-
tion details like memory management. This wrapper class was
then used to implement the WAFER-STATE-SERVER gridder
interface.

2) DELINK: DELINK [24] is a 3-D grid generator which
was developed at the Institute for Microelectronics. It supports
the generation of 3-D high-quality Delaunay meshes with
directional refinement. DELINK is available as a stand-alone
program and as a library. As with TRIANGLE the program is
written in C. Therefore, a C++ wrapper class was developed to
properly handle allocation and deallocation of DELINK data
structures. For the implementation of the gridder interface, this
C++ class was used.

D. Algorithm Module

This module’s responsibilities include the following.

• Provide data structures to hold the WAFER data in
memory. It uses algorithms of theI/O module to retrieve
data from and to transfer data to a persistent WAFER.

• Provide algorithms to manipulate the topography of a
WAFER to directly support etching, deposition, and
oxidation simulations.

• Provide algorithms to extract topological information like
boundaries or interfaces between segments. Since this in-
formation is redundant, it is not stored on the persistent
representation, but computed on demand.

• Provide algorithms forpoint locationand interpolation.

1) Topography Manipulating Operations:A topography
simulator first reads in data from a persistent WAFER.
After the data have been retrieved and (eventually) con-
verted to a simulator specific internal data format (e.g.,
cellular representation) the actual topography simulation
(etching, deposition) is performed. After the simulation has
finished, the resulting topography needs to be merged with the
WAFER-STATE. This merge operation is fully handled in the
WAFER-STATE-SERVER via the GNU TRIANGULATED
SURFACES (GTS) [25] library according to the following
algorithm.

1. The surfaces of the new topography
and the old WAFER-STATE are extracted and
copied into GTS internal data structures.
2. Boolean (solid modeling) operations are
performed with the two surfaces.
3. The result of the previous step is
coarsened via the coarsening algorithms of
GTS.
4. The coarsened result is then used to
extract the new WAFER front. The (new)
WAFER-STATE-SERVER internal data struc-
tures are built from this result, automat-
ically preserving consistency. Note that
this step also includes regridding steps
that are necessary to produce grids for
modified or newly created regions.
5. As a last step, attributes that were
introduced by the topography simula-
tion (e.g., dopant concentrations) are
transferred to the newly created regions
(grids).

2) Point Location and Interpolation:Prior to performing an
interpolation, the element containing the point to interpolate
must be determined (point location). A local interpolation algo-
rithm strongly depends on an efficientpoint locationalgorithm.
Several algorithms exist for thepoint locationproblem, two
of which are implemented in the WAFER-STATE-SERVER.
The first algorithm is tree-based and was implemented for all
three dimensions (oct-tree[26],quad-tree, andbinary-tree). The
second algorithm is based on thejump-and-walk[27] algorithm
and is available in 3-D. Ourjump-and-walkalgorithm uses a
point bucket oct-treefor the search of the start tetrahedron. The
tree-based solution gives a search time of but has
the major drawback of rather long preprocessing times (espe-
cially in the 3-D case). Thejump-and-walkalgorithm has higher
search times [ for searching a Delaunay triangu-
lation of elements in dimension ] but does not require any
preprocessing of the data. The decision whether an application
uses theoct-treeor rather thejump-and-walkalgorithm strongly
depends on the total amount ofpoint locationsthat will be per-
formed during the whole simulation. Therefore, the actual algo-
rithm that is used can by chosen by the application developer.
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Fig. 7. Input WAFER data as they are input to the etch simulator. The colors
of the regions indicate the material type. The blue colored material is a resist
material and acts as a mask. The thin gray colored layer depicts an oxide layer,
the brown material is nitride, and the green material at the bottom is silicon.

Fig. 8. Etch front as delivered from the etch simulator. The shown polygonal
surface is the result of a coarsening algorithm that is applied to the fine initial
cellular etch front that is returned by the etching algorithm.

IV. A PPLICATION

All simulators that are presently developed at the Institute for
Microelectronics are based on the new data model. The devel-
oped process simulators are a 3-D Monte Carlo ion implantation
simulator [28], a 3-D diffusion and oxidation simulator [29], and
a 3-D topography simulator. In this section, we will present, as
an example, the 3-D etching and deposition simulator ETCH3-D.

Etching is used in various steps during the fabrication of an
IC. It is, e.g., used to transfer the pattern comprising the de-
sign of the IC layout from the resist layer as it is created by
lithography onto the WAFER. Another example for an etch step
is to remove layers of material (e.g., masks) from the WAFER.
Several techniques to simulate etching and deposition processes
were developed in the past.

One of our etching simulators [30], [31] is based on the cel-
lular approach. This simulator poses by far the strongest de-
mands on the WAFER-STATE-SERVER library. The simulator
uses theI/O module to read and create a persistent WAFER, re-
spectively. Upon start of the program, the data is first transferred
from a persistent WAFER into memory. Next, a cellular repre-
sentation of the WAFER hull is computed and transferred to the
internal cell-based data structures of ETCH3-D and the actual

Fig. 9. Final outcome of the simulation as it is stored on the persistent WAFER.
The structure results from a boolean operation of the hull of the original input
WAFER (Fig. 7) with the etch front (Fig. 8).

Fig. 10. Detailed view “1” of Fig. 9. The picture shows the under etching of
nitride and oxide that takes place due to the imperfect anisotropy of the etching
process. The different etching rates that apply to silicon, oxide, and nitride are
visible.

etching (or deposition) process takes place. After the etching
simulation is completed, a complex postprocessing step that ex-
tracts the geometry information from the etching front is per-
formed. Finally, the extracted geometry is merged with the ex-
isting WAFER data, which is then made persistent. Figs. 7–11
depict an example of a topography-simulation step.

The example shown is part of a schematic shallow trench
isolation step. It is worth mentioning that the simulator is ca-
pable of handling arbitrary polygonal geometries. Except for
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Fig. 11. Detailed view “2” of Fig. 9. The polygonal silicon surface is clearly
visible.

the input WAFER (Fig. 7), the depicted examples are no man-
hattan geometries as they may result from traditional cellular
etching algorithms, but are arbitrary polygonal structures. The
detail views of Fig. 9 (Figs. 10 and 11) show the typical under-
etching artifacts as they occur in every etching process.

Note that a topography simulation is clearly the most com-
plex process simulation concerning the output operation that
creates the modified WAFER. Other process simulation steps,
like, Monte Carlo Implantation might work only on a subset of
the data stored on a WAFER. Only those regions that are actually
exposed to the ion beam need to be updated. Here, a point-wise
update of the dopant that is introduced suffices. For the case of
diffusion a dopant is not introduced but changed. Both cases are
handled with the same update operation, which is realized by a
callback object into the simulator. The object gets invoked by
the WAFER-STATE-SERVER once for each point. The simu-
lator receives a spatial point and returns the value of the attribute
at that point to the WAFER-STATE-SERVER.

V. CONCLUSION

We have presented a newobject-orienteddata model suitable
for the TCAD tool developer. Major data model related issues in
the TCAD field from the user’s as well as the developer’s per-
spective were pointed out. These issues include interoperability
of tools, grid creation, and algorithms, like boundary extraction
or topography manipulations as they are crucial in the TCAD
field. These issues directly influenced the top-down design of
the WAFER-STATE-SERVER. A strong adherence to theob-
ject-orienteddesign paradigm lead to a separation of interface
(API) and implementation of a module. The identified problems,
namely, what data belong to a WAFER-STATE, a transparent
I/O mechanism, transparent meshing functions, and support for
topological operations are directly supported and implemented
in the WAFER-STATE-SERVER. The APIs of the developed
modules were presented, and the applicability of the new data
model to the TCAD field was demonstrated in a topography sim-
ulation application (which poses the strongest possible demands
on the data model). Three process simulators presently devel-
oped at the Institute for Microelectronics are fully integrated

with the WAFER-STATE-SERVER and take full advantage of
the new concepts.

Future development of the WAFER-STATE-SERVER will
have to focus on meshing issues. For accurately simulating dif-
fusion, oxidation, and implantation processes, the demand to
change (refine and coarsen) a grid during the simulation arises.
Additionally, oxidation will deform the grid (move boundary
and interfaces), such that it usually will no longer conform to
criteria that were imposed on the initial grid (by the chosen grid-
ding algorithm). For performance reasons, such meshing tasks
clearly can not be attacked by the gridder interface as an in-
vocation thereof results in a copy of the WAFER-STATE in-
ternal data structures to the data structures of the gridding algo-
rithm and vice versa. Instead, a local refinement and coarsening
strategy is necessary. Ideally, coarsening is realized by simply
reverting a previous refinement step. Such algorithms, however,
imply that the gridding algorithm must work directly on the sim-
ulator’s internal data structures. From that point of view, it prob-
ably does not make sense to solve the refinement problem from
a (external) library like the WAFER-STATE-SERVER. In the
design of the refinement/coarsening algorithm, however, care
should be taken to design algorithms that are capable of working
on more than one data structure in order to allow a good overall
reuse of the implemented meshing algorithms. The key concept
to that is the template mechanism of the C++ programming lan-
guage. Such algorithms could then be shared between the grid-
ding module of the WAFER-STATE-SERVER and above men-
tioned meshing tasks.

The presented data model, as it is presently implemented,
supports data exchange with tools from a major TCAD vendor
and can easily be extended to also support other vendor’s tools.
It is, however, up to the vendors to decide whether “intervendor”
interoperability of tools will be supported at all in future releases
of their products. In case interoperability shall be supported,
the WAFER-STATE-SERVER presents one possible solution by
providing a strong definition of a WAFER-STATE.
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