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Analysis of Gate Dielectric Stacks Using the Transmitting Boundary Method
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Abstract. We present simulations of tunneling current through layers of high-κ dielectrics using the Tsu-Esaki
model and the quantum transmitting boundary method (QTBM) to estimate the transmission coefficient. In contrast
to transfer-matrix based methods, which suffer from numerical instabilities due to rounding errors, the QTBM is
numerically stable even for large stacks and is suitable for implementation in device simulators. The method is used
to investigate the tradeoff between conduction band offset and permittivity in alternative high-κ materials.
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1. Introduction

To enable further device scaling into the sub-100 nm
channel length regime it is necessary to reduce
MOSFET effective oxide thicknesses (EOT) below
2 nm. This is not possible using SiO2 due to an expo-
nential increase in gate leakage current: a gate current
density of 1 A/cm2 is usually regarded as upper limit
for proper functioning CMOS circuits [1], while low-
power devices may require even stricter limitations.
Gate dielectric stacks consisting of high-κ dielectric
layers such as Si3N4, Al2O3, Ta2O5, HfO2, or ZrO2

have been suggested to act as alternative dielectrics.
Apart from interface quality and reliability, the dielec-
tric permittivity and the conduction band offset to sili-
con are of utmost importance as they determine the gate
current density through the layer. Unfortunately, mate-
rials with a high permittivity have a low band offset and
vice versa, so a trade off between these parameters has
to be found. Furthermore, at the interface to the under-
lying silicon substrate, an interface layer exists which
is either created unintentionally during processing or
intentionally deposited to improve the interface qual-
ity. Due to this layer, the band edge in the dielectric is
not linear but shows a kink. Simulation of gate leak-
age thus requires the calculation of tunneling current
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through piece-wise linear energy barriers, for which the
applicability of the commonly used Wentzel-Kramers-
Brillouin method is questionable. To get a clear picture
of the transmission through the stack, a rigorous solu-
tion of Schrödinger’s equation in the dielectric region
is necessary.

2. Simulation Method

The most prominent and almost exclusively used ex-
pression to describe tunneling through insulating lay-
ers has been developed by Duke [2] and used by Tsu
and Esaki [3] for the simulation of tunneling through a
one-dimensional superlattice. The gate current density
is computed as

Jg = 4πmeffq

h3

∫ ∞

0
T C(Et)N (Et) dEt (1)

where T C(Et) is the transmission coefficient, which
only depends on the energy perpendicular to the inter-
face, and N (Et) the supply function which is defined as

N (Et)

=
∫ ∞

0
[ f1(Et + El) − f2(Et + El + �EC)] dEl (2)

where f1(E) and f2(E) denote the distribution of car-
riers next to the oxide. For the case of a Fermi-Dirac
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distribution the gate current density evaluates to

Jg = 4πmeffqkBT

h3

∫ ∞

0
T C(Et)

× ln

{
1 + exp[(Ef − Et)/kBT ]

1 + exp[(E ′
f − Et)/kBT ]

}
dEt (3)

where Ef and E ′
f denote the Fermi energies at the

semiconductor-oxide interfaces. This expression is
frequently used in the literature and implemented in
various device simulators.

Several methods have been proposed to calculate the
transmission coefficient T C(Et) of an energy barrier as
shown in Fig. 1. Using the Wentzel-Kramers-Brillouin
(WKB) approximation, the transmission coefficient is
found by integration of the wave number within the
classical turning points, i.e. the region whereE ≤ V (x).
Gundlach’s method [4] provides an analytically exact
expression for the transmission coefficient of a lin-
ear potential barrier using Airy functions. For arbitrary
shaped barriers the transfer-matrix method [5] can be
used. It is based on the approximation of an energy
barrier by a sequence of constant or linear energy bar-
riers as shown in Fig. 1. Since the wave function in
constant or linear barriers can easily be calculated, the
total transfer matrix and the transmission coefficient
can be derived by a number of subsequent matrix com-
putations. The main shortcoming of the method is that
it becomes numerically instable for low energies [6].
During the matrix multiplications exponentially grow-
ing and decaying states have to be multiplied, leading
to rounding errors which eventually exceed the ampli-
tude of the wave function itself. The problems have

Figure 1. The energy barrier for the linear and constant potential
transfer-matrix methods.

been overcome by the use of scattering matrices [7],
iterative methods [8], or by simply setting the trans-
fer matrix entries to zero if the decay factor

∑
k j (E)�

exceeds a given value [9].
An alternative method to solve Schrödinger’s equa-

tion with open boundary conditions has been proposed
by Frensley [10] and is based on the quantum transmit-
ting boundary method. Applying a finite-difference ap-
proximation of Schrödinger’s equation on an equidis-
tant grid with an effective mass m j and a grid spacing
�, the discretized one-dimensional Hamiltonian reads

s j−1� j−1 + d j� j + s j+1� j+1 = E�, (4)

where s j = −�
2/(2m j�

2) and d j = �
2/(m j�

2) + Vj .
Open boundary conditions are introduced by writing
the wave functions at the boundaries of the simulation
domain as

�1 = a1 + b1

�n = an + bn (5)

and the wave functions outside of the simulation
domain as

�0 = a1 exp(−ik1�) + b1 exp(ik1�)

�n+1 = an exp(−ikn�) + bn exp(ikn�). (6)

Setting a1 = α1�0 + β1�1 and an = αn�n+1 + βn�n

eliminates the unknown values of b1 and bn and gives
a linear system for the n + 2 complex values � j




α1 β1

s1 d ′
1 s2

s2 d ′
2 s3

· · ·
sn d ′

n sn

βn αn







�0

�1

�2

· · ·
�n

�n+1




=




a1

0
0

· · ·
0
an




(7)

where d ′
i = di − E . Setting a1 = 1 and an = 0 yields

the values of the wave function in the whole simulation
domain for an incident wave from the left side. The
method is easy to implement, fast, and more robust
than the transfer-matrix method.

Figure 2 shows that the methods are equivalent for
a simple triangular barrier. The QTBM does not suffer
from numerical problems like the linear- or constant-
potential transfer-matrix methods. Furthermore, it di-
rectly yields the wave function in the insulator, which
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Figure 2. Transmission coefficient as a function of energy for
a 3 nm thick layer of SiO2 computed by different methods. The
transfer-matrix methods fail for E < 1 eV.

allows to account for the charge of the tunneling carriers
via

n(x) = 2mkBT

h2

∫ ∞

0
| ←
�(x)|2

× ln

[
1 + exp

(
Ef,g − E

kBT

)]
dk + 2mkBT

h2

×
∫ ∞

0
| →
�(x)|2 ln

[
1 + exp

(
Ef,s − E

kBT

)]
dk

where
←
�(x) and

→
�(x) denote wave functions impinging

from the gate and the substrate, respectively, with Ef,g

and Ef,s being the respective Fermi energies.

3. Implementation and Results

The QTBM was implemented in the general-purpose
device simulator MINIMOS-NT. The tunneling current
is calculated between two specified boundaries of in-
sulator or semiconductor segments with N interface
nodes. The total current is found by numerical inte-
gration along the boundary, where the local tunneling
current density is calculated from (3). To assure self-
consistency with the transport model in the underlying
silicon substrate, the local tunneling current density is
considered in the continuity equation of the neighbor-
ing segments. Since trap-assisted tunneling processes
have been neglected, this model gives a lower bound
for the leakage current.

Table 1. Dielectric permittivity, band gap, and conduction band
offset of dielectric materials [11–17].

Permittivity Band gap Band offset
κ/κ0 [1] Eg [eV] �EC [eV]

SiO2 3.9 8.9–9.0 3.0–3.5

Si3N4 7.0–7.9 5.0–5.3 2.0–2.4

Ta2O5 23.0–26.0 4.4–4.5 0.3–1.5

TiO2 39.0–170.0 3.0–3.5 0.0–1.2

Al2O3 7.9–12.0 5.6–9.0 2.78–3.5

ZrO2 12.0–25.0 5.0–7.8 1.4–2.5

HfO2 16.0–40.0 4.5–6.0 1.5

When comparing different dielectric materials, one
encounters a large discrepancy in material parameters,
as seen in Table 1. Choosing some intermediate mate-
rial parameters from Table 1 the gate current density
can be computed as a function of the gate bias for differ-
ent materials with an underlying 0.5 nm layer of SiO2

and a fixed EOT of 1 nm as shown in Fig. 3. Both SiO2

and Si3N4 show a much too high leakage, while Ta2O5,
ZrO2, and HfO2 stay below 1 A/cm2 at VGS = 1 V. Due
to the low conduction band offset, TiO2 shows an es-
pecially pronounced current increase.

To assess the material parameters necessary to reach
a specific maximum gate current density we calcu-
lated the gate current density as a function of the

Figure 3. Gate current density as a function of the gate voltage for
different materials. The dielectric stack consists of a 0.5 nm SiO2

layer and a high-κ layer with a total EOT of 1.0 nm.
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Figure 4. Dependence of the gate current on the high-κ conduction
band offset and permittivity of a stack with EOT = 1.5 nm, a 0.5 nm
SiO2 interface layer at VDS = 0 V and VGS = 1.5 V.

conduction band offset and dielectric permittivity as
shown in Fig. 4. Since it is often not possible to vary
the thickness of the underlying SiO2 layer we fixed it
at 0.5 nm and adjusted the high-κ thickness to reach
an EOT of 1.5 nm. The simulations were performed at
VGS = 1.5 V and VDS = 0 V. Increasing the value of κ

strongly reduces the leakage current due to the higher
physical stack thickness. However, materials with �

below 1 eV never give acceptable gate current densi-
ties. Fig. 5 shows the gate current density for an EOT

Figure 5. Dependence of the gate current on the high-κ layer
thickness, conduction band offset, and permittivity of a stack with
EOT = 2.0 nm, a 0.5 nm SiO2 interface layer at VDS = 0 V and
VGS = 1.5 V.

Figure 6. Dependence of the gate current on the interface layer
thickness, conduction band offset, and permittivity of a stack with
EOT = 1.5 nm at VDS = 0 V and VGS = 1.5 V.

ranging from 0.5 nm to 2.0 nm as a function of the
high-κ layer thickness. Again, the stack consists of an
underlying 0.5 nm layer of SiO2 and the bias point
is VGS = 1.5 V and VDS = 0 V. For � = 1 eV,
large high-κ thicknesses are necessary to reduce the
leakage. Such large stacks may pose problems due to
fringing fields from the drain contact which reduce the
threshold voltage. The tradeoff between permittivity
and conduction band offset gives rise to further effects
as shown in Fig. 6: If the EOT is fixed, an increase of the
SiO2 layer thickness causes a reduced thickness of the
high-κ layer. This is shown in the upper part of Fig. 6
for different values of the permittivity. That reduction
of the total stack thickness may cause the gate current
density at a specific bias point to stay constant, increase,
or even decrease depending on the material parameters.
So, a clear statement about the optimum thickness of
the interface layer depends on the material parameters.

4. Conclusions

We presented simulations of high-κ dielectric materi-
als using the device simulator MINIMOS-NT. The trans-
mitting boundary method has been used to compute the
transmission coefficient of the piecewise linear energy
barrier within the framework of the Tsu-Esaki tunnel-
ing model. In contrast to transfer-matrix based meth-
ods, the transmitting-boundary method does not suffer
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from numerical problems and directly yields the values
of the wave function in the insulator. This allows to take
the charge of tunneling carriers into account. We used
the method to study the influence of permittivity and
conduction band offset on the leakage current of gate
dielectrics. To ensure a leakage current below 1A/cm2

at an effective oxide thickness of 1.5 nm, a band offset
of at least 1.5 eV and a permittivity higher than 8 are
necessary.
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