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The distribution function of hot carriers in state-of-the-art devices is insufficiently de-
scribed using just the electric field or the average carrier energy as parameters. Still,
the standard models to describe carrier transport in semiconductor devices, namely the
drift-diffusion model and the energy-transport model rely on these assumptions. In this
article we summarize our work on six moments transport models which allow an accu-
rate characterization of the distribution function. Within this framework it is possible
to selfconsistently model the scattering integral without resorting to the relaxation time
approximation. In addition, hot electron processes such as impact ionization, which are
difficult to model in lower order transport models, can be described accurately.
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1. Introduction

Accurate modeling of hot carrier effects in modern semiconductor devices has be-

come a crucial ingredient to successful device simulation. In the traditional drift-

diffusion model the carrier gas is assumed to be in equilibrium with the electric

field1. This assumption has been shown to be invalid as the distribution function

lags behind the electric field, for both rising and falling fields. In order to obtain

information about this non-local behavior of the distribution function, various hy-

drodynamic and energy-transport models have been proposed2,3,4. As a result, it

was found that the average carrier energy provides a better basis for modeling phys-

ical parameters, like mobility5,6 and impact ionization7,8, compared to approaches

using the local electric field. In particular, the energy distribution function is com-

monly modeled using a heated Maxwellian shape9.
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f(E) = A exp
[

− E
kB Tn

]

(1)

The prefactor A determines the concentration and the carrier temperature Tn is

the only parameter to determine the shape of the distribution function. Although

the heated Maxwellian approximation provides somewhat more information about

the distribution function than is available in the drift-diffusion formalism, it still

gives a modest approximation for state-of-the-art devices where the gradients of the

electric field are large, as well as for bulk simulations with larger electric fields. In

particular, two important effects have been identified:

• In bulk simulations and inside channel regions of MOS transistors, the high

energy tail of the distribution function contains fewer carriers than predicted

by the heated Maxwellian approximation. This feature of the distribution

function has been called the thermal tail10, because its effective temperature

equals the lattice temperature. The overestimation of the number of hot car-

riers can be significant for modeling hot carrier processes, which relies on this

information. In particular, hot carrier processes, such as impact ionization11

and hot carrier gate currents12, are significantly overestimated. It was found

that the heated Maxwellian approximation provides just a modest extension

of the cold Maxwellian approximation, valid only up to approximately 1000 K.

• Inside drain regions of n+-n-n+ structures and MOS transistors two carrier

populations coexist: the hot carriers coming from the channel mix with the

cold carriers residing in the drain region. This mixed distribution shows a

significant high energy tail representing the hot carriers of the channel which

slowly relax to equilibrium. Because the number of cold carriers is normally

significantly larger than the number of hot carriers, the average energy, which

determines the slope of the heated Maxwellian distribution, is dominated by

the temperature of the cold carriers. Thus the information about the high

energy tail is lost in the Maxwellian approximation, which makes it impossible

to accurately model hot carrier processes in this regime. However, for instance

in the case of impact ionization, hot carriers in that tail still cause a significant

number ionization processes.

In recent years it has been shown that the distribution function can be more

accurately described when two additional moments are taken into account, resulting

in a six moments model11,13,14,15. In the following, we review the most important

findings in this area and highlight the benefits offered by such a description.

2. Boltzmann’s Transport Equation

Transport equations used in semiconductor device simulation are normally de-

rived from Boltzmann’s transport equation (BTE), a semi-classical kinetic equation,
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which reads16

∂tf + u · ∇rf + F · ∇pf = Q[f ] , (2)

where f(k, r, t) represents the carrier distribution function in the six dimensional

phase space and the term on the right hand side represents the rate of change of

f due to collisions. The BTE is valid for general inhomogeneous materials with

arbitrary band structure17. To account for quantum effects, equations based on

the Wigner-Boltzmann equation have been considered18. The group velocity u is

defined as

u(k, r) = ∇pE(k, r) , (3)

where E represents the carrier kinetic energy. The inverse effective mass tensor is

defined as

m̂−1(k, r) = ∇p ⊗ u(k, r) = ∇p ⊗∇pE(k, r) , (4)

where ⊗ denotes the tensor product17. The force F exerted on the electrons in the

presence of electric and magnetic fields and inhomogeneous material properties is

generally given as

F(k, r) = −∇r

(

Ec,0(r) + E(k, r)
)

− q
(

E(r) + u(k, r) ×B(r)
)

(5)

and depends on both k and r. The two spatial gradients (∇r) account for changes in

the bottom of the conduction band edge Ec,0 and the shape of the band structure.

Omitting the influence of the magnetic field and assuming homogeneous materials,

F simplifies to the electrostatic force

F(r) = −qE(r) . (6)

In the following, we will only consider position-independent masses, but permit

energy-dependent masses.

The BTE represents an integro-differential equation in the seven-dimensional

space (k, r, t). To solve this equation numerically by discretization of the differ-

ential and integral operators is computationally very expensive. A widely used

numerical method for solving the BTE is the Monte Carlo (MC) method. This

method has been proven to give accurate results, but is still computationally ex-

pensive. Furthermore, if the distribution of high-energetic carriers is relevant, or

if the carrier concentration is very low in specific regions of the device, MC simu-

lations tend to produce high variance in the results. Another approach, which is

based on an expansion of the distribution function in momentum space into a series

of spherical harmonics, has been successfully used to solve the BTE19,20. In contrast

to the MC method, the spherical harmonic expansion method is deterministic and

the computational effort, while still high, is significantly reduced. However, by only

considering the lower order terms of the expansion, approximations are introduced
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Fig. 1. Electron temperature inside an n+-n-
n+ structure with LC = 200 nm. Also shown is
the normalized fourth-order moment β, which
indicates the deviation from the Maxwellian
shape.
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Fig. 2. The distribution function at the four
characteristic points. The average energies at
the points A and C are the same, whereas the
distribution function looks completely different.
At point D, where the carrier temperature is
370 K, a significant high-energy tail exists.

whose influence on the accuracy of the simulation results is still not fully clarified.

Particularly in the ballistic regime numerically calculated full-band structures can-

not be included, as opposed to the MC method, where usage of such band structures

is a solved problem.

A common simplification is to investigate only a few moments of the distribution

function, such as the carrier concentration and the carrier temperature. A moment

is obtained by multiplying the distribution function with a suitable weight function

φ = φ(k) and integrating over k-space.

〈φ(k)〉 =
1

n

∫

φ(k)f(k) d3k with n =

∫

f(k) d3k (7)

Thus, the three k-coordinates are eliminated at the expense of information loss

concerning the details of the distribution function.

One of the fundamental problems of energy-transport models is that only the

average energy is available to characterize the distribution function. Therefore, a

heated Maxwellian distribution is frequently assumed for the closure of the equation

system and for modeling various physical processes. This assumption is significantly

violated in modern semiconductor devices. Monte Carlo simulation results of an n+-

n-n+ structure with a channel length of LC = 200 nm are shown in Fig. 1 and Fig. 2.

Even though the average energy is the same at points A and C, the distribution

function looks completely different in both cases21,22. A heated Maxwellian distri-

bution, which gives a straight line in a semi-logarithmic plot, is definitely a poor

approximation throughout the whole device.

Additional information is obtained by including the fourth- and fifth-order mo-

ment of the distribution function which results in a six moments transport model.
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We define the kurtosis of the distribution function by normalizing the fourth-order

moment 〈E2〉 to give

β =
3

5

〈E2〉
〈E〉2 , (8)

which is also shown in Fig. 1. For a heated Maxwellian distribution and parabolic

bands β = βMB = 1. Thus the deviation of β from unity quantifies the deviation

from the Maxwellian shape in the parabolic case. When non-parabolic bands are

taken into account, the value of βMB depends on the mean energy but stays close

to unity. Note, however, that a Maxwellian shape is never observed in Monte Carlo

simulations, except for the contact regions where the carriers are still in equilibrium.

Typical values of the kurtosis β are in the range [0.75, 3] which indicates a

strong deviation from a heated Maxwellian distribution. In addition, as shown in

Fig. 3, the kurtosis behaves fundamentally different than in bulk where a unique

relationship βBulk(Tn) exists15. Especially at the drain side of the structures we

observe a strong deviation from the Maxwellian case and even from the bulk non-

Maxwellian case. This deviation corresponds to the high-energy tail in Fig. 2 and

can be used to reconstruct the distribution function from the moments.

3. Band Structure

For the formulation of transport models, a description of the band structure E(k) is

required. The band structure of semiconductors is in general very complex and sev-

eral simplifications are required to obtain tractable macroscopic transport models.

Firstly, it is usually assumed that the band structure is isotropic, that is, the kinetic

energy depends only on the magnitude of the wave vector k. With this assumption
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the dispersion relation can be written in terms of the band form function γ

γ(E) =
p2

2m∗
=

h̄2k2

2m∗
. (9)

The simplest approximation for the real band structure is a parabolic relationship

between the energy and the carrier momentum h̄k,

γ(E) = E , (10)

which is assumed to be valid for energies close to the band minimum. A first order

non-parabolic relationship was given by Kane23,

γ(E) = E(1 + αE) = EHE(αE) , (11)

with α being the non-parabolicity correction factor. Kane’s dispersion relation

results in the following relationship between momentum and velocity

u =
h̄k

m∗

1

1 + 2αE =
h̄k

m∗

∞
∑

i=0

(−2αE)i =
h̄k

m∗
Hu(αE) . (12)

The series expansion shows that the average velocity will contain an infinite number

of higher order moments which are not necessarily negligible. This is problematic

because these quantities are additional unknowns which prohibits closed form solu-

tions.

To obtain a more tractable expression Cassi and Riccò24 approximated Kane’s

dispersion relation as

γ(E) = xEy (13)

and fitted the parameters x and y for different energy ranges. For y = 1 the con-

ventional parabolic dispersion relation is obtained. However, the resulting density

of states shows a “parabolic-like” behavior and is therefore of limited value for the

description of non-parabolic transport phenomena15. To include “non-parabolic-

like” behavior without loosing accuracy in the low-energy region we have proposed

to use the density of states15

g(E) = g0

√
E
(

1 + γg(αE)λg

)

. (14)

4. Boltzmann’s Equation and the Diffusion Approximation

Macroscopic transport models derived from the BTE contain so-called convective

terms which make the handling of the resulting equations cumbersome. Thus addi-

tional simplifications are required to obtain manageable transport models. Several
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simplifications can be formally justified by considering the diffusion limit of Boltz-

mann’s equation which will be explained in the following. We continue with the

scaled form of the BTE25

κ ∂tf + u · ∇rf + F · ∇pf =
1

κ
Q[f ] . (15)

The Knudsen number κ appears as a scaling parameter which represents the mean

free path τ0v0 relative to the device dimension25.

κ =
τ0v0

x0

(16)

Here, τ0 is the characteristic time between scattering events, v0 denotes the velocity

scale and x0 is given by the size of the simulation domain. Carriers in a semicon-

ductor at room temperature are frequently considered a collision-dominated system,

for which κ � 1. Diffusion scaling assumes the time scale of the system to be

t0 =
τ0

κ2
. (17)

For both the macroscopic transport models and the modeling of the distribution

function it is advantageous to split the distribution function into its symmetric and

anti-symmetric parts as

f(k) = fS(k) + κfA(k) . (18)

This is because only the symmetric part fS(k) contributes to averages with the

even weight functions whereas the anti-symmetric part fA(k) contributes to the

averages related to odd weight functions. Without loss of generality, the symmetric

and anti-symmetric parts of the distribution function f(k) are obtained via the

following relations

fS(k) =1
2

(

f(k) + f(−k)
)

, (19)

κfA(k) =1
2

(

f(k) − f(−k)
)

. (20)

By inserting (18) into (15) Boltzmann’s equation splits into two equations

∂tfS + u · ∇rfA + F · ∇pfA =
1

κ2
QS[fS] , (21)

κ2 ∂tfA + u · ∇rfS + F · ∇pfS = QA[fA] . (22)

So far no simplifications have been introduced and (21) and (22) are equivalent

to (15). We now assume that the system is diffusion dominated, that is κ � 1,

and neglect all terms of order O(κ2). This assumption is known as the diffusion

approximation25 and we obtain

∂tfS +u · ∇rfA + F · ∇pfA =
1

κ2
QS[fS] , (23)

u · ∇rfS + F · ∇pfS = QA[fA] . (24)
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In addition we can derive a relationship between the symmetric and anti-symmetric

parts when we assume that f(k) can be obtained by displacing a symmetric function

fS(k) by κk0. Under the assumption that fS(k) is isotropic, that is, it depends

only on the modulus of k and that κk0 is small we expand the distribution function

f(k) = fS(k − κk0) ≈ fS(k) − ∂κf(k) · κk0 (25)

and neglect all terms of order O(κ2), consistently with the diffusion approximation.

4.1. Displaced and Heated Maxwellian Approximation

To illustrate the consequences of the diffusion approximation we consider a Max-

wellian distribution function

fM(k) = fM(k) = A exp
[

−k2

ak

]

(26)

which is displaced by κk0 to give

f(k) = fM(k − κk0) = A exp
[

− (k− κk0)
2

ak

]

. (27)

For the symmetric and anti-symmetric parts we obtain

fS(k) = fM(k) exp
[

−κ2 k2
0

ak

]

cosh
[ 2

ak
κk0 · k

]

, (28)

fA(k) = fM(k) exp
[

−κ2 k2
0

ak

]

sinh
[ 2

ak
κk0 · k

]

. (29)

Assuming that κ is small we obtain from (25)

fS(k) = fM(k) (30)

fA(k) = −∂κf(k) · κk0 = fM(k)
2

ak
k · κk0 (31)

for the symmetric and anti-symmetric part. The impact of this approximation is

shown in Fig. 5 for a small and a large displacement, respectively. Whereas for

a small displacement the accuracy is good, the characteristic double-humps are

removed for larger displacements.

4.2. Influence on Transport Equations

The framework of the diffusion approximation allows one to considerably simplify

the structure of the transport equations. To point out the implications of the

diffusion approximation the important moments resulting from the weight functions

k · k and k ⊗ k, which cause the aforementioned complications, are evaluated in

this section without applying the diffusion approximation. Let f(k) be a displaced

distribution function

f(k) = f0(k − κk0) , (32)
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where f0 is not only symmetric in k but also in every component of k

f0(kx, ky, kz) = f0(−kx, ky, kz) = f0(kx,−ky, kz) = f0(kx, ky,−kz) . (33)

This stronger symmetry property ensures that the resulting tensor quantities are

of diagonal shape. Although off-diagonal elements are usually neglected anyway,

the symmetry requirement (33) gives the formal justification of this approximation.

Functions which satisfy this stronger symmetry criterion are for example isotropic

distribution functions where f0(k) is only a function of the absolute value of k,

f0(k) = f0(|k|), and whose iso-surfaces are spheres. Another example is a distribu-

tion with ellipsoidal iso-surfaces, for instance an anisotropic Maxwell distribution26.

Without loss of generality we split f(k) into its symmetric and anti-symmetric

parts. Since the weight functions k · k and k ⊗ k are even functions, only the

symmetric part of the distribution function has to be taken into account

fS(k) = 1
2

(

f0(k − κk0) + f0(k + κk0)
)

. (34)

Equation (34) is now used in the evaluation of the statistical average 〈k ⊗ k〉:

n〈k ⊗ k〉 =

∫

k ⊗ k fS(k) d3k =

∫

k⊗ k f0(k) d3k + κ2 k0 ⊗ k0 n . (35)

The statistical average of 〈k · k〉 can be evaluated in the same way yielding

n〈k · k〉 =

∫

k · k f0(k) d3k + κ2 k0 · k0 n . (36)

In the diffusion limit (κ � 1) one thus acquires that convective terms of the form

〈k〉 ⊗ 〈k〉 and 〈k〉 · 〈k〉 are neglected against terms of the form 〈k ⊗ k〉 and 〈k · k〉,
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respectively. One of the consequences is that the drift kinetic energy m∗〈u〉2/2 is

neglected against the thermal energy kBTn.

The diffusion approximation thus provides a formal framework which justifies

the transition from hydrodynamic models to energy-transport models. Note that

this simplification is necessary to obtain an equation system suitable for engineer-

ing applications. The otherwise obtained hydrodynamic equations are similar to the

hyperbolic Euler equations of fluid dynamics with the addition of a heat conduction

term and the collision terms27. They describe the propagation of electrons in a semi-

conductor device as the flow of a compressible, charged fluid. This electron gas has a

sound speed, and the electron flow may be either subsonic or supersonic. In the case

of supersonic flow electron shock waves will in general develop inside the device28.

These shock waves occur at either short length-scales or at low temperatures. As the

equation system is hyperbolic in the supersonic regions, special numerical methods

have to be used which are not compatible to the methods employed for the parabolic

convection-diffusion type of equations. Although much effort has been put into the

investigation of hydrodynamic models, the equations remain extremely difficult to

handle and are as such not used under practical circumstances4.

5. Distribution Function Model

We will now give models for the symmetric and anti-symmetric parts of the distri-

bution function within the framework of the diffusion approximation.

5.1. Symmetric Part

The symmetric part is modeled according to our previous works15 as consisting of

a hot (fh) and a cold distribution (fc).

fS(E) = A
{

exp
[

−
(E

a

)b]

+ c exp
[

− E
ac

]}

(37)

= A
{

fh(E) + c fc(E)
}

(38)

The five parameters A, a, b, c, and ac, are calculated in such a way that fS exactly

reproduces the first three even moments provided by the six moments model. We

calculate the even moments of the distribution function using the weight functions

φi = E i (39)

to obtain

〈φi〉 =
1

n

∫

φi fS(E) d3k i = 0, 1, 2 . (40)

Note that the moments of φi depend only on the symmetric part of the distribution

function. In addition, the conditions ac = kBTL and 〈E2〉h = h(〈E〉h) are assumed,

where h(〈E〉) is the relationship between 〈E2〉 and 〈E〉 in bulk, and 〈·〉h is the moment
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of fh only. Note that the cold population only exists inside the drain regions and that

therefore c vanishes inside channel regions15. Introducing the auxiliary functions

G(x, a, b) =
ax+

3
2

b
Γ
(x + 3

2

b

)

, (41)

Iy(x, a, b) = G(x, a, b) + γyα
λy G(x + λy, a, b) , (42)

my(x) = Iy(x, a, b) + c Iy(x, ac, 1) , (43)

and Cm = A g0 we obtain

n = Cmmg(0) and 〈φi〉 =
mg(i)

mg(0)
, (44)

with my(x) being the generalized moment of fS(E) using the parameters γy and λy.

Thus the following algebraic nonlinear equation system for (a, b, c) is solved using

Newton’s method

(mg(1)

mg(0)
,
mg(2)

mg(0)
,
Iy(2, ac, 1)

Iy(0, ac, 1)

)

=
(

〈E〉, 〈E2〉, h
(Iy(1, ac, 1)

Iy(0, ac, 1)

))

. (45)

Note that 〈E〉 and 〈E2〉 are obtained from the solution of the six moments model.

As stated above, in the drain region c = 0 is assumed and the last equation of (45)

is dropped.

5.2. Anti-Symmetric Part

The anti-symmetric part is obtained by displacing the symmetric part by

kc =

2
∑

j=0

Ejkj · k (46)

and applying the diffusion approximation

fA(k) =

2
∑

j=0

EjBj · k fE(E) , (47)

with fE(E) = fh(E) + cA fc(E). Note that a different prefactor appears in front of

fc because the cold electron gas has a different average energy and velocity. This

prefactor is empirically modeled as cA/c = ac/a.

To determine the coefficients Bi we calculate the moments of the anti-symmetric

part of the distribution function using the weight functions

Φu

i = uE i =
h̄k

m∗
E iHu(αE) (48)

and require that they exactly reproduce the three fluxes occuring in the six moments

model. The expressions for the moments are
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〈Φu

i 〉 =
h̄

m∗n

2
∑

j=0

Bj

∫

E i+j(k ⊗ k)Hu(αE)fE(E) d3k (49)

= CM

2
∑

j=0

Bj

∫

E i+j+3/2HM(αE)fE (E) dE . (50)

Here we introduced CM = 2g0/(3h̄n) and

Hg(αE) =
√

1 + αE (1 + 2αE) (51)

HM(αE) = Hu(αE)Hg(αE)HE (αE) = (1 + αE)3/2 (52)

which will be approximated as

Hg(αE) = 1 + γg(αE)λg , (53)

HM(αE) = 1 + γM(αE)λM (54)

to obtain closed form solutions. Introducing the auxiliary functions

My(x) = Iy(x, a, b) + cA Iy(x, ac, 1) (55)

and requiring that fA reproduces the moments 〈Φu

i 〉 we obtain a linear equation

system

〈Φu

i 〉 =

2
∑

j=0

Cij Bj , (56)

Cij = CMMM(i + j + 1) , (57)

where the Cij have the property Cij = Ckl for i + j = k + l. Solving for Bi gives

Bi =

2
∑

j=0

Dij〈Φu

j 〉 (58)

where the Dij are the components of the inverse matrix Ĉ−1 which are symmetric,

Dij = Dji. The anti-symmetric part of the distribution function can now be written

as

fA(k) = fE(E)

2
∑

i=0

di(E) 〈Φu

i 〉 · k (59)

di(E) =

2
∑

j=0

Dji Ej . (60)
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Fig. 6. Cuts through the symmetric and anti-symmetric parts of the distribution function inside
the drain region (left) and at the end of the channel region (right). The symbols are the MC result
while the solid lines are the analytic six moments model. Also shown is the energy-transport (ET)
version.

5.3. Energy-Transport Version

In the following, we shortly present an energy-transport version of this model, be-

cause energy-transport models are the most commonly used extensions to drift-

diffusion models. An energy-transport version of the even part is obtained by as-

suming b = 1 which gives a heated Maxwellian distribution function

fS(E) = A exp
[

−E
a

]

. (61)

The coefficient a is determined via the nonlinear relation

a = 〈E〉 1 + aλgA( 3
2
)

3
2

+ aλgA( 5
2
)

(62)

with A(x) = γgα
λg

Γ(x + λg)

Γ( 3
2
)

(63)

which is of course a special case of (45) and gives the expected result 〈E〉 = 3kBT/2

for parabolic bands. The anti-symmetric part is obtained by considering only B0

and B1 in (47) which reduces the rank of the matrices Ĉ and D̂ to two.

5.4. Evaluation of the Analytic Models

A comparison of the analytic model with Monte Carlo data is given in Fig. 6 at the

end of the channel region and at the beginning of the drain region of an n+-n-n+

structure with LC = 100 nm. The agreement in both regions is highly satisfactory.

Also shown is the energy-transport version which is clearly not able to reproduce

the basic features of the distribution function.
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6. Scattering Models

By introducing a relaxation time τφ(E) related to the weight function φ the scat-

tering integral can be rearranged formally as9

∫

φ(k) Q[f(k)] d3k = −n
〈 φ(k)

τφ(E)

〉

. (64)

For even weight functions the relaxation time is obtained as

1

τφ(E)
=

∫

[

1 − φ(k′)

φ(k)

]

S(k,k′) d3k′ . (65)

Special care has to be taken if the weight function φ is a vector, since division as

performed in (65) is not possible. Considering φ = k, the momentum relaxation

time τp(k) is obtained as29

1

τp(k)
=

∫

[

1 − k′

k
cosϑ

]

S(k, k′ cosϑ) d3k′ . (66)

In the following we will evaluate the scattering integral considering acoustic de-

formation potential scattering (ADP), intravalley scattering (IVS), and impurity

scattering (IMP)29. For IMP the Brooks-Herring model is used for simplicity, al-

though more accurate models can be treated in the same manner. The momentum

relaxation times for the three scattering processes read29

ADP :
1

τp(E)
= Kadp g(E) , (67)

IVS :
1

τ±
p (E)

= K±
ivs σ(E ± E0)g(E ± E0) , (68)

IMP :
1

τp(E)
= Kimp T (t) Himp(αE) E−3/2 , (69)

with the auxiliary definitions for IMP

T (t) =
[

ln(1 + t) − t

1 + t

]

with t =
4

Eβ
E(1 + αE) , (70)

Himp(αE) =
1 + 2αE

(1 + αE)3/2
. (71)

The constants Kadp, K±
ivs, E0, Kimp, and Eβ are energy-independent and standard

definitions are used9.

6.1. Relaxation Times

The relaxation times for the balance equations are determined by the even moments
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φi which evaluate with neglected generation/recombination processes to

1

τφ0
(k)

= 0 , (72)

1

τφ1
(k)

=

∫

[

1 − E(k′)

E(k)

]

S(k,k′) d3k′ , (73)

1

τφ2
(k)

=

∫

[

1 − E2(k′)

E2(k)

]

S(k,k′) d3k′ . (74)

The scattering integral can then be written as

qi = −
〈 φi

τφi
(E)

〉

=
1

mg(0)

∫

φi E1/2Hg(αE)
fS(E)

τφi
(E)

dE . (75)

Finally we can express the relaxation times required in the macroscopic transport

equations as

τi = τ〈φi〉 = −〈φi〉 − 〈φi〉eq
qi

with 〈φi〉eq =
mg(i)

mg(0)

∣

∣

∣

eq
=

Iy(i, kBTL, 1)

Iy(0, kBTL, 1)
. (76)

Since ADP and IMP are assumed to be elastic, E(k) = E(k′), they do not contribute

to these relaxation times. IVS is assumed to be isotropic with E(k′) = E ±E0 which

gives

1

τφ1
(E)

= ∓E0

E

∫

S(k,k′) d3k′ = ∓E0

E
1

τ±
p (E)

, (77)

1

τφ2
(E)

=
[

∓2E0

E − E2
0

E2

]

∫

S(k,k′) d3k′ =
[

∓2E0

E − E2
0

E2

] 1

τ±
p (E)

. (78)

The scattering integral is then obtained as

q0 = 0 , (79)

q1 = E0g0A

∫

fE(E)E1/2Hg(αE)
[ 1

τ−
p (E)

− 1

τ+
p (E)

]

dE , (80)

q2 = E0g0A

∫

fE(E)E1/2Hg(αE)
[

(2E − E0)
1

τ−
p (E)

− (2E + E0)
1

τ+
p (E)

]

dE . (81)

6.2. Mobilities

We now define the scalar mobilities µi which are associated with the fluxes Φu

i via

−
〈 Φp

i

τp(E)

〉

= q
〈Φu

i 〉
µi

with i = 0, 1, 2 . (82)

Note that we do not employ the relaxation time approximation as we evaluate

the scattering integral directly, using the microscopic relaxation times of the odd

moments Φp

i = h̄k E i.

1

τΦ
p

i

(k)
=

∫

d cosϑ

∫

k′2dk′
[

1 − k′

k
cosϑ

E i(k′)

E i(k)

]

S(k, k′, cosϑ) (83)
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Since ADP and IMP are elastic, which means E(k) = E(k′), but anisotropic with

S = S(k, k′, cosϑ) we obtain

1

τΦ
p

i

(k)
=

∫

[

1 − k′

k
cosϑ

]

S(k,k′) d3k′ =
1

τp(k)
(84)

with τp being the momentum relaxation time. Since IVS is isotropic with S =

S(k, k′), the integration over ϑ yields zero and we obtain

1

τΦ
p

i

(k)
=

∫

S(k,k′) d3k′ =
1

τ(k)
=

1

τp(k)
. (85)

We can now evaluate the scattering integral using the analytic distribution function

to obtain

−
〈 Φp

i

τp(E)

〉

=
1

n

∫

Φp

i

fA

τp(E)
d3k (86)

= CQ

2
∑

j=0

Qij Bj (87)

with the definitions CQ = m∗ CM and

Qij =

∫

E i+j+3/2HQ(αE)
fE(E)

τp(E)
dE , (88)

HQ(αE) = (1 + αE)3/2(1 + 2αE) . (89)

Substituting the already calculated coefficients Bi which depend on the fluxes 〈Φu

l 〉
we obtain

−
〈 Φp

i

τp(E)

〉

= CQ

2
∑

j=0

Qij

2
∑

l=0

Djl〈Φu

l 〉 = CQ

2
∑

j=0

〈Φu

j 〉
2

∑

l=0

DljQil =

2
∑

j=0

Zij〈Φu

j 〉 (90)

Zij = CQ

2
∑

l=0

DljQil . (91)

The scattering integral for the odd weight functions can thus be expressed as a

linear combination of the fluxes with the coefficients Zij which only depend on the

even moments. This is in accordance with the results obtained by Hänsch5. The

coefficients Zij contain the information about the scattering rates via the coefficients

Qij which are given as follows

Qadp
ij = Kadpg0

∫

E i+j+2Hadp(αE)fE (E) dE , (92)

Qivs
ij = K±

ivsg0

∫

E i+j+3/2H±
ivs(E)fE(E) dE , (93)

Qimp
ij = Kimp

∫

E i+jHQ(αE)Himp(γ2)fE(E) dE , (94)
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Fig. 7. Mobilities and relaxation times required for the six moments model for bulk with Emax =
200 kV/cm. The symbols are the Monte Carlo results, whereas the lines are obtained by the
analytic six moments model. The dotted line gives the result obtained by a displaced and heated
Maxwellian approximation.

with the auxiliary non-parabolicity functions

Hadp(αE) = (1 + αE)2(1 + 2αE)2 , (95)

H±
ivs(E) = (1 + αE)3/2(1 + 2αE)

√

E ± E0Hg(E ± E0) . (96)

6.3. Evaluation of the Scattering Models

In our Monte Carlo code we use the same scattering rates as given above and a

single equivalent isotropic non-parabolic band. Although this band structure is

unreliable for energies above 0.5 eV, it allows us to write relatively simple closed

form expressions when the integrals occurring in the evaluation of the scattering

integral are accordingly approximated. It is believed that our approach can be

extended to more accurate analytical models in a straight forward manner. We

use the first six moments obtained from the Monte Carlo simulation to evaluate

the distribution function model and the scattering integral. The resulting highly

accurate mobilities and relaxation times are shown in Fig. 7 for a bulk simulation

with Emax = 200 kV/cm and in Fig. 8 for an n+-n-n+ structure with LC = 100 nm

and a maximum electric field of Emax = 100 kV/cm. For bulk and the channel

region where c = 0 and no heuristic criterions are applied the error in the mobilities

and and relaxation times is well below 0.1%. Even in the drain region, where the

bulk relation between the average of the square of the energy and the average energy

is assumed to be valid, there is precise accuracy.

In Fig. 7 and Fig. 9 the analogous expressions for the energy-transport model are

evaluated which clearly confirm that the resulting heated and displaced Maxwellian

distribution is not well suited for the modeling of hot carrier processes. Furthermore,

it might be concluded that the energy-transport model is not self-contained, in a
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sense that it simply does not provide sufficient information to accurately model the

scattering integral. The six moments model, on the other hand, can be considered

self-contained because the information available about the distribution function is

sufficient to accurately model the scattering integral.

In energy-transport models the carrier mobility is normally modeled using the

expression proposed by Hänsch5,30.

µ0 = µeq

(

1 − 3
2

µ0

qτ1v2
s

(

kBTL − 2
5

〈u〉 · 〈uE〉
|〈u〉|2

))−1

(97)

Here µeq is the zero-field mobility, vs the saturation velocity, and τ1 the energy

relaxation time which is assumed to be constant. Equation (97) is evaluated in

Fig. 10 for τ1 = 0.33 ps. Furthermore, it is frequently assumed that µ1 equals µ0

which is definitely a rough approximation as can be seen in Fig. 11 where the ratio

µ1/µ0 is shown for several n+-n-n+ structures.

7. A Six Moments Transport Model

In the following the transport equations determining the first six moments will

be derived where we will restrict ourselves to parabolic bands. The macroscopic

transport equations are obtained by multiplying Boltzmann’s equation with the

appropriate weight functions and integrating the product over k space. As usual,

we assume that the Brillouin zone extends towards infinity which is justified because

the distribution function declines exponentially31. We apply the weight functions

φi and Φp

i with i = 0, 1, 2 to the Boltzmann equation given by (23) and (24).

We continue in the following with the unscaled version because all simplifications

obtained from the diffusion limit are treated separately.

7.1. Balance Equations

The balance equations of the six moments transport model, which are obtained as

the moments of (23) with the weight function φi, take the following general form

∂tn 〈φi〉 + ∇r · n 〈uφi〉 − nF · 〈∇p φi〉 =

∫

φi QS[fS] d3k . (98)

The calculation of the gradients of the even weight functions φi is straightforward

and gives

∇p φ0 = 0 , ∇p φ1 = u , and ∇p φ2 = 2 E u . (99)

The balance equations can thus be written as

∂tn + ∇r · n 〈u〉 = 0 , (100)

∂tn 〈E〉 + ∇r · n 〈uE〉 − nF · 〈u〉 = −n
〈E〉 − 〈E〉eq

τ1

, (101)

∂tn 〈E2〉 + ∇r · n 〈uE2〉 − 2nF · 〈uE〉 = −n
〈E2〉 − 〈E2〉eq

τ2

, (102)
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where the definitions of the relaxation times τi (76) have been used.

7.2. Flux Equations

For the formulation of the flux equations we apply the weight functions

Φp

i = pE i = h̄kE i (103)

to (24) and obtain

∇r · n 〈u ⊗ Φp

i 〉 −nF · 〈∇p ⊗ Φp

i 〉=
∫

Φp

i QA[fA] d3k . (104)

Equations (98) and (104) contain several gradients of scalar and vectorial functions

which will be evaluated in the following. Note that the two identities which represent

the gradients of a scalar- and a vector-field are helpful

∇p p = ep =
p

p
and ∇p ⊗ p = Î (105)

where Î is the unity tensor and p = |p|.
For i ≥ 1 the gradients of the odd weight functions Φp

i can be written as

∇p ⊗ Φp

i = ∇p ⊗ p E i = E i ∇p ⊗ p + p⊗∇pE i = E i Î + (u ⊗ p) i E i−1 . (106)

The tensor product ∇p ⊗ Φp

i thus evaluates to

i = 0 : ∇p ⊗ p = Î , (107)

i = 1 : ∇p ⊗ (p E) = Î E + u⊗ p , (108)

i = 2 : ∇p ⊗ (p E2) = Î E2 + 2u⊗ p E . (109)

Here we have introduced the energy tensors Ûi which are defined as

Ûi = 〈u⊗ p E i−1〉 =
h̄2

m∗
〈k ⊗ k E i−1〉 (110)

for parabolic bands. For the evaluation of (110) we note that the integral

n 〈k ⊗ k E i−1〉 =

∫

k ⊗ k E i−1 fS(k) d3k (111)

depends only on the symmetric part of the distribution function fS(k). Under

the assumption that fS(k) is isotropic, that is, fS(k) = fS(|k|), all non-diagonal

elements vanish for symmetry reasons.

Since the distribution function is assumed to be isotropic, the integrals deter-

mining the diagonal elements all evaluate to a common value K

〈kl kl〉 =
1

n

∞
∫∫∫

−∞

k2
l fS

(√

k2
x + k2

y + k2
z

)

dkx dky dkz = K , l = x, y, z , (112)
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which evaluates to K = 〈k2〉/3. Therefore, the statistical averages of the tensors

are diagonal with all diagonal elements being equal:

Ûi ≈
h̄2

3m∗
〈E i−1 k2〉 Î = 2

3
〈E i〉 Î = Ui Î . (113)

Using (113) allows one to write the average 〈∇p ⊗ Φp

i 〉 as

i = 0 : 〈∇p ⊗ p〉 = Î (114)

i = 1 : 〈∇p ⊗ (p E)〉 = Î 〈E〉 + 〈u ⊗ p〉 = Î 〈E〉 + Û1 = Î 5
3
〈E〉 (115)

i = 2 : 〈∇p ⊗ (p E2)〉 = Î 〈E2〉 + 2〈u ⊗ p E〉 = Î 〈E2〉 + 2Û2 = Î 7
3
〈E2〉 (116)

The flux relations then take the following form:

2
3
∇n〈E〉 − nF 〈1〉 = −q n

〈u〉
µ0

, (117)

2
3
∇n〈E2〉 − 5

3
nF 〈E〉 = −q n

〈uE〉
µ1

, (118)

2
3
∇n〈E3〉 − 7

3
nF 〈E2〉 = −q n

〈uE2〉
µ2

. (119)

7.3. Conventional Variables

We now rewrite the above equations using the conventional variables14

〈u〉 = V , 〈uE〉 = S , 〈uE2〉 = K , (120)

〈1〉 = 1 , 〈E〉 = 3
2

kB Tn , 〈E2〉 = 5·3
4

k2
B T 2

n βn , (121)

〈E3〉 = 7·5·3
8

k3
B M6 . (122)

Here, V is the average velocity, S the average energy flux, K the average kurtosis

flux, Tn the average temperature, and βn the kurtosis. M6 represents the highest

order moment which would be determined by the next higher equation. As the

equation hierarchy is truncated here, we have to express M6 using the available

lower order moments. For a Maxwellian distribution function and parabolic bands

we find that M6 = T 3
n . As we have the kurtosis of the distribution function βn

available, we suggested the following empirical closure relations14

M6 = T 3
n βc

n with c = 0, 1, 2, and 3 . (123)

The ratio MMC
6 /M6 is shown in Fig. 12 for two n+-n-n+ structures with LC =

1000 nm and LC = 100 nm, respectively. As can be seen, c = 3 gives the smallest

deviation from the desired value, one. In addition c = 3 proved to be numerically

more stable than other versions. Especially for c = 0, which corresponds to closing

the system with a Maxwellian13 the Newton procedure fails to converge in most

cases.
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Fig. 12. Comparison of the different closure relations for a n+-n-n+ structure with LC = 1000 nm
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The final parabolic six moments model thus consists of the three flux relations

nV = −C0

(

∇(n Tn) +
q

kB

En
)

, C0 =
kB

q
µ0 , (124)

nS = −C1

(

∇(n T 2
n βn) +

q

kB

En Tn

)

, C1 =
5

2

k2
B

q
µ1 , (125)

nK = −C2

(

∇(n T 3
n βc

n) +
q

kB

En T 2
n βn

)

, C2 =
35

4

k3
B

q
µ2 , (126)

together with the three balance equations

∇ · nV = −∂tn , (127)

∇ · nS = − 3
2
kB ∂t(n Tn) − q nE ·V − 3

2
kB n

Tn − TL

τ1

, (128)

∇ · nK = − 15
4

k2
B ∂t(n T 2

n βn) − 2 q nE · S− 15
4

k2
B n

T 2
n βn − T 2

L

τ2

. (129)

7.4. Influence of the Anisotropy of the Distribution Function

In the derivation the symmetric part of the distribution function has been assumed

isotropic. It is commonly justified by the fact that scattering is strong. A cut

through the kx, ky-plane of the symmetric and anti-symmetric part of the distri-

bution function at the end of the channel region of an n+-n-n+ structure with

LC = 100 nm is shown in Fig. 13 and Fig. 14, respectively. The solid lines repre-

sent rigorous MC results, whereas the dashed lines are from calculations with an

isotropic analytical model. A slight anisotropy is visible as the real distribution

function is narrower in the direction perpendicular to the current flow.

One consequence of the assumped isotropy is that within the diffusion approxima-
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tion the energy tensors

Ûi = 〈u ⊗ p E i−1〉 = Ui Î (130)

are diagonal tensors where all diagonal elements have the same value Ui. For ex-

ample, with i = 1 we obtain as a consequence a scalar carrier temperature Tn. In

general, however, the elements of the energy tensors are not equal. Particularly

the element in the direction of the current flow may contain a significant kinetic

component which is neglected in the diffusion approximation because of (35) and

(36). The kinetic component can be identified in a general way by separating the

group velocity u into a random part uc and the mean value V = 〈u〉 as u = uc +V

and the carrier momentum p into pc and its mean value P = 〈p〉 as p = pc + P.

The energy tensors can then be written as

Ûi = 〈u ⊗ p E i−1〉 = 〈uc ⊗ pc E i−1〉 + V ⊗P 〈E i−1〉 (131)

Using the same value Ui for all tensor components implies that the influence

of thermal diffusion on the current is overestimated in the direction normal to

the current flow. A striking manifestation of the consequences can be observed

in the simulation of MOS transistors where the electron concentration obtained by

energy-transport models spreads much deeper into the bulk than would be expected

from MC simulations. A typical situation is depicted in Fig. 15 where the electron

concentration of a MOS transistor with Lg = 130 nm resulting from a MC simulation

is compared to that of an energy-transport simulation. The overestimated spreading

of the carriers in the energy-transport simulation can be clearly seen.

In a recent study26 this effect has been related to errors introduced by assuming

an isotropic distribution function and by the closure of the energy-transport equa-

tion system where a heated Maxwellian is assumed. The ratio of the temperature

tensor components are shown in Fig. 16 for two n+-n-n+ structures and three MOS

transistors. As the energy is assumed to be equally partitioned over the components

of the temperature tensor, an overestimation of the temperature component into

the bulk is obtained. Note that fairly artificial measures like reducing the heat flux

by a small factor32,33 should be used with care.

This enhanced spreading of the carriers into the bulk leads to a complete break-

down of the energy-transport model in the case of partially depleted SOI transistors

where the excess carriers recombine in the bulk and virtually turn the transistor off

via the bulk effect. A modified energy-transport model has been proposed26 where

both the closure and the anisotropy is modeled based on empirical corrections. In

MOS transistors this effect is much less important and has as such been considered

only as a cosmetic problem of energy-transport models as the body potential is not

influenced by this effect.
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Fig. 13. Cut through the kx, ky-plane of the symmetric part of the distribution function at the
end of the channel region of an n+-n-n+ structure with LC = 100 nm. The solid lines give the
MC results, whereas the dashed lines are from the analytical model.
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Fig. 14. Cut through the kx, ky-plane of the absolute value of the anti-symmetric part of the
distribution function at the end of the channel region of an n+-n-n+ structure with LC = 100 nm.
The solid lines give the MC results, whereas the dashed lines are from the analytical model.
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from a MC simulation and an energy-transport (ET) model. Neighboring lines differ by a factor
of 10. The overestimated carrier spreading into the bulk in the ET simulation can be clearly seen.
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8. Application

With the analytical distribution function model at hand it is in principle straight

forward to transfer microscopic scattering rates in models suitable for macroscopic

transport models. So far, the heated Maxwellian approximation has been used

for this purpose, giving unsatisfactory results. In the previous sections we have

already demonstrated how the scattering integral can be directly evaluated using the

analytic distribution function model with superior results as compared to the heated

Maxwellian approximation. The same procedure can be applied to other scattering

processes, in particular hot carrier processes which depend even stronger on the

shape of the distribution function. Since impact ionization is a very important

hot carrier effect, causing substrate currents and gate oxide degradation, it will be

considered in the following, as notoriously poor results are obtained within energy-

transport models.

8.1. Impact Ionization

A closed form macroscopic impact ionization rate is obtained by integrating Keldysh’s

expression34 against the analytic distribution function (37).

PII(E) = P0

(E − Eth

Eth

)2

. (132)

Using (14) and (37) we obtain11,35

GII,i =

∫ ∞

Eth

E i PII(E) f(E) g(E) dE (133)

≈
∫ ∞

Eth

E i PII(E) fh(E) gc(E) dE (134)

= P0

n

mg(0)

ai+
3
2

b

( a

EC

)λc−
1
2

(

Γi,1 − 2zth
−

1
b Γi,2 + zth

−
2
b Γi,3

)

, (135)

where Γ(a, z) is the incomplete Gamma function and

Γi,j = Γ
( i + j + λc

b
, zth

)

, (136)

zth =
(Eth

a

)b

, (137)

gc(E) = g0

√

EC

( E
EC

)λc

. (138)

Equation (138) is an approximation of the high-energy region of the density of

states (EC = 0.35 eV and λ = 1.326) based on Cassi and Riccò’s24 model, which

has been introduced to simplify the final expression. Furthermore, it is assumed

that only fh(E) contributes to the impact ionization rate. In (135) i = 0, 1, 2

and denotes the entries for the continuity, energy balance, and kurtosis balance

equations, respectively.
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Fig. 17. Analytical impact ionization rates in comparison with Monte Carlo data for two n+-n-n+

structures. The ADF models use analytical models for the distribution function, either based on
six moments (SM) or a heated Maxwellian distribution (HM). Also shown are the empirical models
based on the local field (LF) and the local energy (LE).

A comparison with Monte Carlo data is shown in Fig. 17 where the analytical

models have been evaluated using the moments obtained by Monte Carlo simula-

tions. The model based on (37) delivers highly accurate results for both devices. It

is important to note that when a heated Maxwellian is assumed instead of (37), the

results deteriorate. This is frequently performed in physics based models7. Also

shown are the results obtained by two commonly used empirical fit models8

GLF
II = n gII exp

(

−EC

|E|
)

, (139)

GLE
II = n gII exp

(

− EC

kB Tn

)

. (140)

These models use the local field (LF) and on the local energy (LE) as parameters.

To match the Monte Carlo results the LF and LE models have been calibrated,

whereas the same impact ionization parameters as in the Monte Carlo simulation

were used for the models based on the analytical distribution function.

9. Conclusions

We present a six moments transport model which also the kurtosis of the distribution

function as a solution variable. The kurtosis gives a significant improvement in the

accuracy of distribution function models. This accuracy is exploited for modeling

mobilities and relaxation times by evaluating the scattering integral where highly

satisfactory results have been achieved. From these results it might be concluded

that the energy-transport model is not self-contained, in a sense that it simply

does not provide sufficient information to accurately model the scattering integral,

whereas the six moments model is Thus, we consider the six moments transport

model a balanced trade-off between accuracy and complexity.
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