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On Smoothing Three-Dimensional Monte Carlo Ion
Implantation Simulation Results
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Abstract—An algorithm for smoothing results of three-dimen-
sional (3-D) Monte Carlo ion implantation simulations and trans-
lating them from the grid used for the Monte Carlo simulation to
an arbitrary unstructured 3-D grid is presented. This algorithm is
important for joining various process simulation steps, where data
have to be smoothed or transferred from one grid to another. Fur-
thermore, it is important for integrating the ion implantation sim-
ulator into a process flow. One reason for using different grids is
that for certain Monte Carlo simulation methods, using orthogrids
is mandatory because of performance reasons.

The algorithm presented sweeps a small rectangular grid over
the points of the new tetrahedral grid and uses approximation by
generalized Bernstein polynomials. This approach was put on a
mathematically sound basis by proving several properties of these
polynomials. It does not suffer from the adverse effects of least
squares fits of polynomials of fixed degree as known from the re-
sponse surface method.

The most important properties of Bernstein polynomials gen-
eralized to cuboid domains are presented, including uniform
convergence, an asymptotic formula, and the variation dimin-
ishing property. The smoothing algorithm which works very fast
is described and, in order to show its applicability, the resulting
values of a 3-D real world implantation example are given and
compared with those of a least squares fit of a multivariate
polynomial of degree two, which yielded unusable results.

Index Terms—Approximation methods, integrated circuit ion
implantation, Monte Carlo methods, polynomials.

I. INTRODUCTION

A FTER a Monte Carlo simulation of ion implantation on
an orthogrid, the question arises how to translate the re-

sulting values, i.e., concentrations, to an unstructured grid. In
the Monte Carlo simulation, an orthogrid is commonly used in
order to achieve workable simulation times, since calculating
point locations, i.e., tracing the position of ions, dominates per-
formance. For other subsequent simulations via, e.g., the finite
element method, it is mandatory to use different, unstructured
grids. Furthermore, the resulting values have to be smoothed in
order to provide suitable input for the simulation of subsequent
process steps like diffusion.

Thus, an algorithm for smoothing Monte Carlo ion implanta-
tion results has to meet the following demands.

• It has to work with unstructured target grids.
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• It must provide suitable smoothing.
• Since the number of grid points in the target grid is usually

large, it must not be computationally expensive.
One simple approach is to perform a least squares fit of a

multivariate polynomial of a fixed degree, usually two, and to
hope that this polynomial is a suitable approximation providing
proper smoothing. This is known as the response surface
methodology (RSM) [1] approach and has been used to a
great extent in computer-aided design applications, but it often
does not work satisfactorily. In order to solve this problem,
generalizations of Bernstein polynomials were devised and
their properties proven. Hence, a fast algorithm based on these
polynomials was developed and applied to real world exam-
ples, where its advantages can be seen. Before describing this
method, we will have a closer look at the RSM approach. The
RSM approach will be compared with the proposed algorithm
since least squares fits are a popular method.

The RSM approach can be summarized as follows. Let
be a continuous function on a multidimensional interval

. On the interval , a rectangular
grid with points is chosen. The RSM approximation of

is the multivariate polynomial of a degree two or higher fixed
degree, which is determined by a least squares fit such that

is minimal. Computing the coefficients of is a well-known
procedure [1]. RSM has been used extensively in computer-
aided design applications, e.g., in [2]–[13].

Although it can be argued that the RSM approximation is
based on a truncated Taylor series expansion

for a multivariate function , it is important to note that this is a
local approximation and quite different from a least squares fit
for several points. In the Taylor series expansion, convergence
occurs when the number of terms and, thus, the degree of the
polynomial increases, whereas in the RSM approach, the de-
gree of the approximating polynomial is fixed to an arbitrary
low value. Increasing the degree is possible of course, but the
choice is still arbitrary and the number of coefficients and, thus,
the number of points required for the least squares fit increases
abundantly.

Furthermore, the RSM suffers from the fact that a polyno-
mial of fixed degree cannot preserve the global properties of the
original function: the set of all polynomials of a certain fixed
maximal degree is not dense in , compact. There
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do not exist any rigorous statements about approximating or
smoothing properties. Moreover, using more and more points
for the least squares fit is not a remedy and generally does not
improve the RSM polynomial, while the computational effort
is increased. A simple example for this fact is the exponential
function.

Although the RSM approach can be improved by trans-
forming the variables before fitting the polynomials, it has to
be knowna priori which transformations are useful and should
be considered. If this knowledge is available, it can of course
be applied to other approximation approaches as well.

Finally, an advantage of the RSM approach is the simple
structure of the approximations: it is easy to deal with polyno-
mials of degree two. However, in the algorithm proposed in the
following, no polynomials have to be constructed explicitly and
the computational effort for doing least squares fits is eliminated
as well.

In the following, the properties of generalized Bernstein poly-
nomials are discussed and the algorithm is described in detail.
Finally, the two approaches are compared by looking at the re-
sults of a three-dimensional (3-D) ion implantation example
with about 80 000 grid points.

II. PROPERTIES OFBERNSTEINPOLYNOMIALS

The Weierstraß Approximation Theorem states that contin-
uous functions on compact intervals can be arbitrarily well ap-
proximated by polynomials. One constructive way to obtain
such polynomials are Bernstein polynomials which were first
introduced by Sergei N. Bernstein in the univariate case. A gen-
eralization to multidimensional intervals and its properties is
presented in this section. Generalizations to multidimensional
simplices using barycentric coordinates and other properties of
Bernstein polynomials can be found, e.g., in [14]–[20].

In order to keep the formulae simple, only functions defined
on the multidimensional intervals , i.e., the
unit cubes in , are considered. Using affine transformations,
it is straightforward to apply the formulae and results to arbitrary
intervals.

1) Definition (Multivariate Bernstein Polynomials):Let
and be a function of variables. The

polynomials

are called the multivariate Bernstein polynomials of.
We note that is a linear operator.
2) Theorem (Pointwise Convergence):Let

be a continuous function. Then, the multivariate Bernstein poly-
nomials converge pointwise to for

.
The property of pointwise convergence can be obtained from

uniform convergence in the univariate case by going up in the
number of dimensions one by one. Much more important, how-
ever, is uniform convergence.

3) Theorem (Uniform Convergence):Let
be a continuous function. Then, the multivariate Bernstein poly-
nomials converge uniformly to for

.
A reformulation of this fact is the following corollary.
4) Corollary: The set of all polynomials is dense in

.
By presupposing more knowledge about the rate of change

of the function, namely a Lipschitz condition, an error bound is
obtained.

5) Theorem: If is a continuous func-
tion satisfying the Lipschitz condition

on , then the inequality

holds.
6) Theorem (Asymptotic Formula):Let , let

be a function, and let , then

This asymptotic formula gives us information about the rate
of convergence, and states that it depends only on the partial
derivatives . This is noteworthy, since it is often the
case that the smoother a function is and the more that is known
about its higher derivatives, the more properties can be proven,
but in this case, only the second order derivatives play a role.

7) Theorem (Total Variation):Let be the total
variation of over and let be a continuous
function. Then

where the equality sign holds if and only if the functionis
monotone.

This means the approximation is smoother than the original
function concerning the amount of total variation.

8) Theorem (Variation Diminishing Property):Let
be the number of real zeros ofin the interval ( ,

) and let be a continuous function. Then

where is the number of changes of sign ofin [0, 1].
This last theorem is the reason for the excellent smoothing

properties of polynomials of Bernstein type. It states that Bern-
stein polynomials should be used whenever a polynomial ap-
proximation is needed which does not oscillate more often about
any straight line than the function to be approximated.

Concerning the numerical aspect, an implementation for uni-
variate Bernstein polynomials was presented in [21]. The higher
the degree of the approximation polynomial, the more care that
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Fig. 1. In this figure, the calculations performed for one point of the
unstructured target gridB are outlined in a two-dimensional example. They
are analogous in higher dimensions. The thin orthogonal lines confine the cells
of the initial gridA, the four sloped lines denote the unstructured grid, and the
point in the middle is the one currently considered. The5 points show which
values are used for determining the approximating polynomial.

has to be taken in their numerical evaluation. In the cases needed
for our applications, this is not an issue.

III. A LGORITHM

The algorithm works by constructing approximating multi-
variate Bernstein polynomials in the neighborhood of the points
of the unstructured new grid. Let be the initial isotropic ho-
mogeneous grid, where values are associated with the volume
cells, as is usually the case in Monte Carlo simulations of ion
implantations, and an arbitrary grid where values are associ-
ated with the grid points. This grid is to be used in following
simulations, and hence, it is determined by their demands. It is
often an anisotropic inhomogeneous one.

For each point of grid , neighboring points are used for
constructing an approximation value for the point considered
(cf. Fig. 1), where , odd, and is the dimension.

was chosen in the example below and provides good
smoothing results. At the boundary, the values of gridare
extended constantly. Thus, points are used for constructing
a multivariate Bernstein polynomial which is evaluated at the
point in the middle in question. Note that it is not necessary
to calculate the polynomial explicitly, since each polynomial is
later evaluated at one point only. Additionally, it is not necessary
to use an affine transformation by assuming that the convex hull
of the neighboring points is and the middle point has
coordinates .

Thus, for three dimensions and setting , the values
of the points of grid are

where are the values of the corresponding cell of grid
and has coordinates (0, 0, 0) and has coordinates

(1, 1, 1).
One of the benefits of this algorithm is that it can be imple-

mented in a straightforward manner in languages like C and
Fortran using the expression for given

Fig. 2. View of the sample device, where the upper part consists of polysilicon,
the middle part of silicon dioxide, and the lower part of silicon.

Fig. 3. Cut through the sample device, where the middle part is silicon and the
outer part silicon dioxide.

above. In order to minimize computation time, the values of the
binomial coefficients can be precalculated and stored in arrays.

Furthermore, it is fast so that it can be used for grids con-
taining hundreds of thousands of points. Due to the theorems
given above, its smoothing and approximating properties are
outstanding. Thus, it is faster, easier to implement, and approxi-
mates and smooths better than the RSM approach of fitting poly-
nomials of fixed degree.

IV. 3-D EXAMPLE

The example is a 3-D CMOS structure as shown in Figs. 2
and 3, which consists of poly-silicon in the upper part, silicon
dioxide in the middle part, and silicon in the lower part. A boron
dose of cm with an energy of 15 keV was implanted in
a Monte Carlo simulation [22]–[24] using an isotropic homo-
geneous grid. The resulting concentration of boron interstitial
atoms in cm is shown in Figs. 4–8. The new anisotropic in-
homogeneous grid with 78 651 grid points was generated by
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Fig. 4. Front view of the sample Monte Carlo ion implantation after smoothing
using the new algorithm. The unstructured destination grid with 78 651 points
is shown as well.

Fig. 5. Front view of the sample Monte Carlo implantation after smoothing
using the new algorithm.

DELINK [25] and is additionally shown in Fig. 4. In Figs. 4, 5,
7, and 8, the new algorithm was applied on 55 grids, whereas
in Fig. 6, least squares fits of polynomials of degree two on grids
of the same size were performed.

Obviously, the result in Fig. 6 is inferior to the result yielded
by the algorithm described in the previous section. In order to
interpret the failure of the RSM method, it is important to note
that the shape of the RSM polynomials of degree 2 does not
allow enough change to adapt to the points to be approximated.
Because of the inherent noise in the Monte Carlo simulation
result, the shapes of the RSM approximations vary strongly be-
tween neighboring elements. Furthermore, because of the lim-
ited choice of approximating polynomials, the noise may even
be amplified.

The new algorithm provides very good smoothing and yields
concentration values at the grid points that can serve as input to
subsequent simulation steps without problems. In this example
the computation time on an Intel Pentium III processor at 1 GHz
is 2.417 ms per point using the RSM method and 0.858 ms per
point using the new algorithm.

Fig. 6. Front view of the sample Monte Carlo ion implantation after extracting
values using least squares fits of multivariate polynomials of degree two.

Fig. 7. Cut parallel to the front side of the sample Monte Carlo ion
implantation after smoothing using the new algorithm.

Fig. 8. Back view of the sample Monte Carlo ion implantation after smoothing
using the new algorithm.

V. CONCLUSION

In summary, the properties of polynomials of fixed degree
arising from least square fits were compared to those of general-
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ized Bernstein polynomials on multidimensional intervals. The
properties of the Bernstein polynomials were proven and pre-
sented, and it was found that these fulfill the requirements for
approximations needed for smoothing Monte Carlo simulation
results and translating them from ion implantation orthogrids to
unstructured grids.

The polynomials and the algorithm devised provide the
following benefits. First, they converge uniformly when the
number of base points goes to infinity. Second, an asymptotic
formula gives information about their rate of convergence.
Third, total variation is decreased and the approximations
do not oscillate more often about any straight line than the
original function. This assures suitable smoothing. Fourth, the
algorithm works very fast and is easy to implement using the
specialized formula given, since the calculation of the actual
approximating polynomials is avoided.

Finally, the new algorithm and its RSM counterpart were
compared in a real world Monte Carlo ion implantation example,
and the new algorithm was found to yield superior results,
which can immediately be used for further simulations.
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