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Abstract. Backward Monte Carlo methods for solving the Boltzmann
equation are investigated. A stable estimator is proposed since a pre-
viously published estimator was found to be numerically instable. The
principle of detailed balance, which is obeyed by state transitions of a
physical system and ensures existence of a stable equilibrium solution,
is violated by the transition probability of the unstable method, and is
satisfied by construction with the proposed backward transition proba-
bility.

1 Introduction

For the numerical study of non-equilibrium charge carrier transport in semi-
conductors the Monte Carlo (MC) method has found wide spread application.
In particular the physically transparent forward MC method is commonly em-
ployed, which evaluates functionals of the distribution function. The more ab-
stract backward MC method, however, has found virtually no application in
semi-classical transport calculations. This method follows the particle history
back in time and allows the distribution function to be evaluated at given points
with desired accuracy. The method is particularly appealing in cases where the
solution is sought in sparsely populated regions of the phase space only.

In the field of semi-classical transport the backward MC method has been
proposed end of the 1980’s [1] [2]. One of the roots of this method is in quantum
transport [3], a field where also various applications are reported [4][5].

2 Boltzmann Equation

On a semi-classical level the transport of charge carriers in semiconductors is de-
scribed by the Boltzmann Equation (BE). For the time- and position-dependent
transport problem the BE reads

0

<§+V(k)vl‘+F(rat)vk) f(karat):Q[f](karat)v reD. (1)
This equation is posed in the simulation domain D and has to be supplemented
by boundary and initial conditions. The distribution function is commonly nor-
malized as [, dr [dk f(k,r,¢) = 4m*Np(t), with Np denoting the number of
carriers contained in the semiconductor domain of volume Vp.
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In (1) the carrier’s group velocity v is related to the band energy e(k) by
v = I~ 'Ve(k). The force field F takes into account electric and magnetic fields.
If only an electric field E is present, the force field is given by F = gE/k, where
q is the charge of the carrier. The scattering operator Q) = Q4 — @; consists of
a gain and a loss term, respectively. If many-body effects such as carrier-carrier
scattering and degeneracy are neglected, the scattering operator will be linear,
an assumption that is crucial for the presented approach. The two components
of () are

Qqlfl(k,x,t) :/f(k’,r,t)S’(k',k,r,t) dk’, (2)

Qilf1k,r,t) =Xk, r,t)f(k,r, 1), (3)
with A(k,r,t) = [ S(k,k,r,t) dk’ denoting the total scattering rate.

2.1 Integral Form of the Boltzmann Equation

The BE is now transformed to integral form by a formal integration over a phase
space trajectory.

K(r) = ko + /F<R<y>,y>dy, R(r) = 1o + /v<K<y>>dy (4)

to to

This trajectory has the initial condition K(t¢) = ko and R(tp) = ro and solves
the equations of motion in phase space, given by Newton’s law and the carrier’s
group velocity. The following integral form of the BE is obtained [6]:

t
f(k,r,t) :/dt’/dk’ f(K R(t),t)
0

t

SO RO exp ([ A, R, )y

+fi<K<o>,R<o>>exp(— / A<K<y>,R<y>,y>dy) (5)

This equation represents the generalized form of Chamber’s path integral [7].
The source term contains f;, a given initial distribution. Augmenting the kernel
by a delta-function of the real space coordinate and a unit step function of the
time coordinate allows transformation of (5) into an integral equation of the
second kind:

Kk, r,t,X v t') = S(k/,K(t’),r/,t’)eXp</)\(K(y),R(y),y)dy)

x 6@ —R{H)H(Et—t) (6)
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fk,r,t) :/dt’/dk’/dr’ Kk, r,t,k v, ) f(K, o', ¢') + folk,r,t) (7)
0

2.2 The Neumann Series

Substituting (5) recursively into itself gives the Neumann series expansion of the
solution f in a given phase space point k, r at time ¢.

Flert) = fO 4+ fO 4 f& 4 (8)

Convergence of the series has been proven in [8]. MC algorithms for solving an
integral equation can be derived by evaluating the terms of the iteration series
by MC integration. Each term of the iteration series has the same structure. In
the term of order n the integral operator is applied n-times to the source term
fo- As an example we write the term of second order explicitly.

t t1
fPk,r,t) :/dtl/dkl/dtg/dkg
0 0
2]

fi<K2<o>,R2<o>>exp< / A<K2<y>,R2<y>,y>dy>
0
X S(k%Kl(t2)7R1(t2)at2)eXP(—/)\(Kl(y)le(y)vy)dy)

to

x S(kl,Kom),Ro<t1>,t1>exp( / A(Ko@),Ro(y),y)dy) ©)

t1

Final conditions for the k-space trajectories are given first by Ko(t) = k and
then by the before-scattering states K;(¢1) = k; and Ks(t2) = ko (See Fig. 1).
The real space trajectory ends at final time ¢ in the given point Ry(¢) = r and
is continuous at the time of scattering: R (t1) = Ro(t1), Ra(t2) = Rq(t2).

The iteration term (9) describes the contribution of all second order trajec-
tories to the solution. On such a trajectory a particle undergoes two scattering
events during propagating from time 0 to ¢ and is found on its third free-flight
path at time t.

3 Backward Monte Carlo Methods

Backward MC algorithms for the solution of the Boltzmann equation have been
proposed in [1] [2]. Given an integral equation f(z) = [ K (z,2') f(2')dz’ + fo(z),
the backward estimator of the n-th iteration term is constructed as
K K(xp_1,7n

oo | Rlnont) ) (10)
p(CCOawl) p(il?n_hl'n)

V") (z0) =
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t1

to

0 [r]

Fig. 1. Sketch of a backward trajectory starting at time ¢ and reaching time 0
after three free flights. The symbols used in (9) are shown.

where p denotes a transition probability density. The set of points xg, x1, ... xy, is
referred to as a numerical trajectory. After generation of N numerical trajectories
the n-th iteration term is estimated by the sample mean

1 N
F o) = 5 DoA™ (o) (11)
s=1

For the Boltzmann equation considered here the variable 2 denotes = = (k, r, ).
In this work we discuss two specific choices of the transition probability p.

3.1 Probability Density Functions

The components of the kernel (6) are used to construct probability density func-
tions (pdf). From the scattering rate S one can define a pdf of the after-scattering

states kg,
S(kp, ka)

Akp)
with the total scattering rate A(ky) = [ S(ks, kq) dk, as a normalization factor.
Conversely, the pdf of the before-scattering states k; is defined as
S(ky, ka)

M(ky)

Pr(Ka, kp) = (12)

Pi(kp, ka) = (13)

The normalization factor is given by the backward scattering rate, A*(k,) =
fS(kb, k,) dkp.
The pdf of the backward free-flight time ¢; is given by
tj
it = A (e exw ([ A 0) ). (1)

ti
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and satisfies the normalization fjjoo pi(ti, t;)dt; = 1. Final condition of the tra-
jectory is K;(¢;) = k;.

3.2 The Source Term

In case of the Boltzmann equation the source term is treated in a specific way.

t

folk.r. 1) = fi<K<o>,R<o>>exp(— / A(K(y))dy) (15)

0

The exponential function represents the probability that a particle moves with-
out scattering from 0 to ¢. This probability is now used as an acceptance proba-
bility. The probability is expressed as an integral over the respective pdf, given

by (14).
eXp(— / )\(K(y))dy) - / polr, k) dr (16)

0 —o00

The acceptance probability is checked as follows. For a particle in state k at
time t the backward free flight time 7 is generated from p;. If 7 is negative,
the estimator is nonzero, otherwise, the estimator evaluates to zero. To obtain
a nonzero estimator of the n-th iteration term all the generated times t4,...t,
must be positive, whereas the next time generated, t,41, must be negative. For
a trajectory of order n all other estimators of order m # n evaluate to zero. In
this way an estimator for the distribution function f is obtained as

N
Zf”)xo QNZ (17)

Here n(s) denotes the order of the s-th numerical trajectory. The estimator is
now defined as
K(z07x1) K(znflazn)

(n) —
v\ (xg) =
(o) p(CCOawl) p(il?n_hl'n)

Note that this estimator samples the initial distribution f;, whereas in (10) the
source term fy is sampled.
3.3 Transition Probability Densities

In the original work [2] S(kp, k,) is interpreted as the unnormalized distribution
of the before-scattering states kjp, and consequently the normalized pdf (13) is
employed. Using the transition density

P, vtk t)=pr (K, K({)) p(t', t,k) 6(x' —R(")) H(t —t) (19)
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the estimator (18) becomes

A (Ko(t)) A" (Kn-i(tn))
AKo(t1)) " AKn-1(tn))

Although the MC algorithm based on the estimator (20) is consistently derived
from the integral form of the BE, computer experiments reveal a stability prob-
lem. The particle energy becomes very large when the trajectory is followed
backward in time. The initial distribution takes on very small values at high
energies, such that many realizations of the estimator will be very small. With
small probability, the particle energy will stay low, where the initial distribution
is large. These rare events give large contributions to the estimator, resulting
in a large variance. The computer experiments show that the variance increases
rapidly with time. However, for a given time ¢ the variance of the estimator is
finite.

The time evolution of the particle energy can be understood from a property
of the scattering rate known as the principle of detailed balance. This property
ensures that in any system particles scatter preferably to lower energies. If for
trajectory construction the backward transition rate (13) is employed, the prin-
ciple of detailed balance is inverted in the simulation and scattering to higher
energies is preferred.

The principle of detailed balance is reflected by the following symmetry prop-
erty of the scattering rate:

S(ki, kj) = S(kj, ki) exp(B(e(k;) — e(k;))) (21)

where 8 = 1/(kpT) and e(k) denotes the carrier energy. The scattering rate
of carriers in a semiconductor contains contributions from various scattering
sources and is thus represented by the sum of the corresponding rates.

S(ki,kj) =Y Si(ki, k;) (22)
l

V) (k1 ) = £i(K,n(0),R,(0)).  (20)

The total scattering rate is given by A(k) = >, Ai(k). A scattering mechanism is
either elastic, that is e(k;) = e(k;), or inelastic, e(k;) # e(k;). For each inelastic
process the sum contains two entries, where one entry describes the inverse
process of the other. In the case of phonon scattering these partial processes
are caused by absorption and emission of a phonon, respectively. The scattering
rates are commonly derived from Fermi’s golden rule,

Su (I, ki) = S| M? Ny 3(elly) + o — efk)), (23)
Sem(ky ki) = 2 (M (N + 1) 8(elhy) — ho — k), (24)

where M denotes the interaction matrix element, N, the Bose-Einstein statistics
and hw the phonon energy. Interchanging k; and k; and taking into account the
relation (Ny + 1) = N, exp(Bhw) gives the following symmetry property
Sab (kia kj) = Sem(kja ki) eXP(*/Bhw) (25)
Sem(kia k]) = Sab (kja kl) eXp(ﬁhw> (26>
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Fig. 2. Electron energy distribution functions obtained by backward and forward MC
algorithms.

This formulation shows that the absorption rate in backward direction is pro-
portional to the emission rate in forward direction, and vice versa. From (25)
and (26) it follows then that S = S,p + Sem has the symmetry property (21).

The stability problem can be solved using the forward scattering rate also
for the construction of the backward trajectory and changing the estimator ac-
cordingly. In the transition density the forward pdf (12) is employed.

P 't k,r,t) =pr(kK', K(t") p(t', t, k) 6(r' — R(t')) H(t —t) (27)
The estimator (18) becomes
V(M (k,r,t) = exp(BAe;) . .. exp(BAey,) fi (K, (0), R, (0)) . (28)

The A¢; denote the difference in particle energy introduced by the I-th scattering
event.

4 Results

MC calculations of electron transport in silicon have been performed. Condi-
tions assumed are E = 10kV /cm and ¢t = 3ps at T = 300K. Fig. 2 compares
the electron energy distributions as computed by the backward MC method
and a forward MC method employing statistical enhancement through event
biasing. As initial distribution a Maxwellian distribution is assumed. The back-
ward method is used to evaluate the energy distribution at discrete points above
800meV. The statistical uncertainty of the result is controlled by the number
of numerical trajectories starting from each point. In the simulation 107 back-
ward trajectories are computed for each point. The backward method resolves
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the high energy tail with high precision as shown in Fig 2. The depicted range
of 30 decades is out of reach for the here considered variant of the forward MC
method.

Acknowledgment

This work has been partly supported the European Commission, project
NANOTCAD, IST-1999-10828.

References

1. C. Jacoboni, P. Poli, and L. Rota, “A new Monte Carlo Technique for the Solution of

the Boltzmann Transport Equation,” Solid-State Electron., vol. 31, no. 3/4, pp. 523—
526, 1988.

. M. Nedjalkov and P. Vitanov, “Iteration Approach for Solving the Boltzmann Equa-
tion with the Monte Carlo Method,” Solid-State Electron., vol. 32, no. 10, pp. 893—
896, 1989.

. R. Brunetti, C. Jacoboni, and F. Rossi, “Quantum Theory of Transient Transport in
Semiconductors: A Monte Carlo Approach,” Physical Review B, vol. 39, pp. 10781—
10790, May 1989.

. M. Nedjalkov, H. Kosina, S. Selberherr, and I. Dimov, “A Backward Monte Carlo
Method for Simulation of the Electron Quantum Kinetics in Semiconductors,” VLSI
Design, vol. 13, no. 1-4, pp. 405-411, 2001.

. T. Gurov and P. Whitlock, “An Efficient Backward Monte Carlo Estimator for
Solving of a Quantum-Kinetic Equation with Memory Kernel,” Mathematics and
Computers in Simulation, vol. 60, pp. 85-105, 2002.

. H. Kosina, M. Nedjalkov, and S. Selberherr, “Theory of the Monte Carlo Method for
Semiconductor Device Simulation,” IEEE Trans. Electron Devices, vol. 47, no. 10,
pp- 1898-1908, 2000.

. R. Chambers, “The Kinetic Formulation of Conduction Problems,” Proc. Phys. Soc.
(London), vol. A65, pp. 458-459, 1952.

. M. Nedjalkov and I. Dimov, “Convergency of the Monte Carlo Algorithms for Linear
Transport Modeling,” Mathematics and Computers in Simulations, vol. 47, pp. 383—
390, 1998.



