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Monte Carlo method for modeling of small signal response
including the Pauli exclusion principle
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A Monte Carlo method for small signal analysis of degenerate semiconductors is presented. The
response to an electric field impulse parallel to the stationary electric field is obtained using the
nonlinear Boltzmann kinetic equation with the Pauli exclusion principle in the scattering operator.
After linearization of the Boltzmann equation a new Monte Carlo algorithm for small signal analysis
of the nonlinear Boltzmann kinetic equation is constructed using an integral representation of the
first order equation. The generation of initial distributions for two carrier ensembles which arise in
the method is performed by simulating a main trajectory to solve the zero order equation. The
normalization of the static distribution function is discussed. To clarify the physical interpretation of
our algorithm we consider the limiting case of vanishing electric field and show that in this case
kinetic processes are determined by a linear combination of forward and backward scattering rates.
It is shown that at high degeneracy backward scattering processes are dominant, while forward
transitions are quantum mechanically forbidden under such conditions due to the Pauli exclusion
principle. Finally, the small signal Monte Carlo algorithm is formulated and the results obtained for
degenerate semiconductors are discussed®0@3 American Institute of Physics.
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I. INTRODUCTION rithm for small signal analysis in degenerate semiconductors.
We also clarify the physical aspects of the algorithm by con-

To investigate the small signal response of the carriers igjgering the zero field limit and present a zero field mobility
semiconductors, different Monte Carlo techniques are widely;4nte Carlo algorithm, which in the limiting case of nonde-

applied to solve the time-dependent Boltzmann equatidn. generate statistics gives the algorithm developed in Ref. 5.
There are also small signal approaches based on the velocity The article is organized as follows. In Sec. Il the Boltz-
and energy balance equatidhowever, a significant advan-  ann kinetic equation including the Pauli exclusion principle
tage of Monte Carlo methods based on the Boltzmann kinetigs |inearized. The integral form of the first order equation is
equation is that they allow a comprehensive treatment Ofonstrycted in Sec. Ill. The possibility of generating initial
kinetic phenomena within the quasiclassical approach anisyrihytions for two particle ensembles is discussed in Sec.
account, in a rather simple way, for accurate band structuresy |n sec. v we develop a combined rejection technique to
Additionally, the quantum mechanical Pauli exclusion prin-¢give the first order equation, and then the Monte Carlo al-
ciple can be taken ir_1to cpnsideration to study the small Siggorithm is formulated. A physical interpretation of the
nal response of carriers in degenerate semiconductors. — ethod considering the zero field limit is given in Sec. V.

When the carrier density is very high the Pauli exclusionyex; the zero field Monte Carlo algorithm taking the Pauli

principle becomes important and may have a strong influg, cjusion principle into account is presented. Finally, results

ence on different differential response functions which relate,i5ined for degenerate semiconductors are presented in Sec.
a small perturbation of the electric field and a mean value of

some physical quantity. The influence is expected to be

strong and it has been pointed bthat the behavior of im-

pulse response functions is determined by the overlap of thg. LINEARIZED FORM OF THE BOLTZMANN

distributions of two carrier ensembles introduced in the for-EQUATION

malism. This overlap is much stronger when the Pauli exclu- o . .

sion principle is included due to the additional statistical Ve start from the Boltzmann kinetic equation, which

broadening. When degenerate statistics is taken into accouri2keS the Pauli exclusion principle into account. The latter

the Boltzmann equation is nonlinear, which makes its solu€nsures that two electrons do not occupy the same quantum

tion more difficult. One way to solve it is the well known sFate. The case of a homogeneous bulk sem|conducFor_|s con-

method based on the Legendre polynomial expan&ion. S|der§d, _and thus the space depgndence qf the distribution

this work, however, we employ the Monte Carlo approach. function is neglected. TheT dlffgrent]al scat.termg rates are as-
We extend an approach presented in Ref. 4 for the smafiumed to be space a_nd time invariant. Wlth these conditions

signal response analysis and construct a Monte Carlo algdh® Boltzmann equation takes the following form:

L) + E(t)Vf(k,t):Q[f](k,t), ()
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with the scattering operatdp[ f](k,t) given by the expres-
sion:

Q[f]l(k,t)= f f(k',v)[1—1f(k,t)]S(k’,k)dk’

—jf(k,t)[l—f(k’,t)]S(k,k’)dk’. 2)

Here, E(t) is the electric fieldg is the particle charge, and

S(k',k) stands for the differential scattering rate.
In order to linearize Eq.1), we write the electric field in
the form

E(t)=Es+Eq(1), )

whereEg denotes a stationary field afig(t) a small pertur-

bation superimposed on the stationary field. It is assume
that this small perturbation of the electric field causes a small

Smirnov et al.

Equation(7) is linear with respect td,(k,t) and represents a
kinetic equation, which differs from the usual form of the
Boltzmann equation, whereas the stationary Boltzmann Eq.
(6) is nonlinear with respect tb(k). The differences of Eq.

(7) from the conventional form of the Boltzmann equation
are the additional term on the right-hand side proportional to
E, and the expression for the scattering operator, which has
a more complex form. Both terms depend on the stationary
distributionf(k). Finally, it should be noted that in general
both Egs.(6) and (7) must be solved to find the response
characteristics.

Ill. INTEGRAL REPRESENTATION OF THE
gOLTZMANN-LIKE EQUATION

To construct a Monte Carlo algorithm we reformulate

follows:
f(k,t)=fy(k)+fi(k,t), (4)

wheref (k) is a stationary distribution function arfd(k,t)

a small deviation from the stationary distribution. Substitut-

ing Eqg. (4) into Eq. (2), the scattering operatd®[ f](k,t)
takes the form

Q[f](k,t)=f [fs(k")+fa(k",1)]

X[1—Tf4(k)—fi(k,t)]S(k’ k)dk'

—f [fs(k)+ 1 (k)1 fs(k")

—fo(k',t)]S(k,k")dk". (5

a new differential scattering rat8(k’,k) and a new total
scattering rate (k), respectively,

S(k’ k) =[1—f(k)]S(k’ k) + fo(k)S(k,k'), 9

X(k)Zf {[1—fs(k")1S(k,k") +fs(k")S(k", k) jdk’

:fé(k,k')dk'. (10)

It is worth noting that the similarity with the standard Bolt-

zmann equation is only formal, as both differential and total
scattering rates are now functionals of the stationary distri-
bution function, which is the solution of the equation of zero

Collecting terms of zero and first order we derive the zeroorder (6).

order equation

%Es Vi(k)=[1— fs(k)]J’ fs(k")S(k’, k)dk’

—fs(k)f[1—fs(k’)]8(k,k’)dk’, (6)
and the first order equation

dfi(k,t) g q
St 7 B V(== ZEi(t) - Vi(k)

where we have introduced the notation:

Ql[f](k’t):[l_fs(k)]J f1(k",)S(k",k)dk’
—fl(k,t)J' [1—fy(k')]S(k,k")dK’
—fl(k,t)f fo(k")S(k’,k)dk’

+fs(k)f f,(k",)S(k,k")dk’. 8)

With these definitions the scattering operator of the first
order formally takes on the conventional form:

Ql[f](k,t)=f f1(k" Sk’ k)dk’ —f1(k,t)X(K),
1y
and the Boltzmann-like equation can be rewritten as follows:

afi(k,t) ¢
o + %ES- Vii(k,t)

:J ik’ 0)S(k’, k)dk’ —f,(k,t)X (k)

q

TR AX(S) (12)

We derive the integral form of this equation using techniques
described in Ref. 8. Introducing a phase space trajectory
K(t")=k—(g/h)Eg(t—t"), which is the solution of New-
ton’s equation, and taking into account that the perturbation
is switched on at=0, and thusf,[K(ty),ts]=0 for t;<<O,

we obtain the following integral form:
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t ~ E; ~
fl[K(t),t]:det’f dk’ (k" A K K(t)] G(k):g-(x(k)fs(k)—J f(k')B(k' k)dk' |, (16)
S
t q [t where N (k) =[S(k,k")dk’. The last expression suggests
><exp< —Jt,)\[K(Y)]dY) ——JOEl(t') splitting G into two positive functions. From the balance

condition stated by the zero order E@) it follows (X)s

. t. , =(\)s, where the stationary statistical average is defined as
X[VIsIIK(t )]'eXP<_Jt,"[K(y)]dy)dt : (-+y¢=[f(K)---dk. Then, the initial distributions can be
written as
13
, . . o : . Eim ~ | MK)fs(k)
Finally, we assume an impulse like excitation of the electric G =E—<)\>S T ,
field, E4(t) = 8(t) E;,, and obtain s s 17
t 5 Ein ~ NK)F(k) | | S(k,k")
fl[K(t),t]=f dt’f dk’ (k" t") k', K(t")] G7=ﬂ<)\>sJ — - dk.
0 Es (N)s X(K)

As can be seen from E@l7), G* represents the normalized
before-scattering distribution function for a particle trajec-
tory whose free-flight times are determined by the conven-

t . . . — . .
~ tional scattering rate.(k), while G~ gives the normalized
X J—
exp( f Ox[K(y)]dy), (149 after-scattering distribution function for a particle trajectory

constructed using(k,k’) andx(k), respectively.

t~
xexp(—ft,xwy)]dy +GIK(0)]

where

q
G(k)=— 7Ejn- VI(K). 15
(k) fim s(K) (19 B. Integral form of the nonlinear Boltzmann equation
The essential difference of this integral representation from  To show how to generate the distributioBs and G~
the one of the nondegenerate approach consists in the aye use the integral representation of the stationary Boltz-
pearance of the new differential scattering ra(&’ k) and ~ mann Eq.(6). To accomplish this we first reformulate the

total scattering rata (k). Another difference from the inte- scattering operator in EG6):

gral form of the Boltzmann equation for the nondegenerate

case is common to both approaches and is reflected by theQ[fs]=[1—fs(k)]J fs(k")S(k’, k)dk’

additional free term on the right-hand side, which in general

cannot bg treated as an initial distribution, because it can take +f Fo (k") a(k N (K'Y S(k— k' )dk’ — Fo(k)
on negative values.

X

f [1—-fy(k")]S(k,k")dk’ + a(k)N(K){, (18
V. SOLUTION OF THE ZERO ORDER EQUATION where we have introduced the self-scattering eatk), and

To solve the nonlinear Boltzmann equation including thethe delta function guarantees that the self-scattering does not
Pauli exclusion principle Monte Carlo algorithms based on e&change an electron state. Free-flight times are generated us-
rejection technique have been developed by Bosi andng the total scattering ratk(k) and we require the self-
Jacobori and later by Lugli and Ferr}? We adopt the first  scattering rate to fulfill the equality
algorithm to solve the zero order equation. In the following,
we show that this algorithm can also be used to generate the )\(k):f [1—Tfs(k")]IS(k,k")dk" + a(k)N(K). (19
initial distributionsG* andG ™~ of the two carrier ensembles,
which appear in the first order equation. The normalizationThis gives for the self-scattering rate the following expres-
of the stationary distribution required for the correct rejec-sion:
tion is discussed.

1
A. Initial distributions of the two ensembles a(k)= WJ' fs(k")S(k,k")dk". (20

Using the same method as suggested in Ref. 4, the frége introduce an additional differential scattering rate
term in Eq.(14) is split into two positive function&™ and 3k, k)

G, which are related t& through the relationG=G"
—G™. These two positive functions are considered as initial é(k,k’)z[1—fs(k’)]3(k,k’)+ a(K)N(K)S(k—k"),
distributions of two carrier ensembles, which contain the (21
same numbers of particles. To find the initial distributions for .

the case of a longitudinal perturbation we use the zero order f S(k,k")
Eq. (6), which gives together with Ed9): N(k)

dk’=1. (22
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Now, taking into account Eqg19) and (21), the scattering which is normalized to unity. This means that we can gener-
operator(18) takes the conventional form: ate initial distributionsG* and G~ by introduction of the
main trajectory, which is constructed using the algorithm
Q[fs]:f fs(k')é(k',k)dk/_fs(k))\(k), (23)  from Ref. 9 to solve Eq(6). Then, for each main iteration
two carrier ensembles with initial distribution6™ and
Using the Neumann series of the forward equation we deriv& ™~ evolve in time according to E(7) for the secondary

as an example the second iteration ternf as: trajectories.
fg):f dtzf dtlf dtof dk%f dk?f dk;-{fo(ki)} C. Normalization of the stationary distribution
0 2 E function
ty é[Kz(tz),kg] The stationary distribution functiofy(k) must be prop-
X[exp( B fo )‘[K2(y)]dy)7‘[KZ(t2)] A Ko(ty)] erly normalized as a probability,<0f (k) <1 to guarantee

the correct rejection of scattering events. Tepace is di-
é[Kl(tl),ki‘] vided into subdomain§) of sizeVy=(Ak)3. In the follow-
CNKL(t)] ing, f, stands for the average distribution function(lfor a

given valley anch is the contribution to the electron density

from the same valley. In each subdomain the electron density
is

ty
x[exp(— ﬁ x[Kﬂy)de)x[Kl(tl)]

X

to
ex;{—ft )\[K(y)]dY))\[K(to)]}

XO(t—t1)0[K(1)]O(tg—t). (24

Here thek-space is assumed to be divided in a mesh with the

elementary volumé\,, © (k) is the indicator defined as a and the average distribution function is given as

function with values unity ik € ) and zero otherwise) (t) _ fofyk)dk  4mn

is the step function ant{?)= [ f?)(k,t)© o (k)dk. From Eq. fo=—ns - Ly (27)

(24) we see that if the free-flight time is calculated according Va Va

to the scattering rata(k), the conditional probability den- Using the before-scattering estimation for the statistical

sity for an after-scattering stat€ from the initial statek is  average

equal toS(k,k")/\ (k). 1< Acky)
Within the algorithm presented in Ref. 9 the before- <<A>>=C—E b }

scattering distribution function is equal (k) f(k)/(\)s, N A (kp)

which giveS the diStribUtiOfG+. In order to find the distri- whereN is the number of electron-free ﬂ|ghts and the nor-

bution function of the after-scattering states the beforemgjization constan€ is given as

scattering distribution function should be multiplied by the

1
nn:mfﬂfs(k)dk, (26)

(28)

472 TS 1N (ky)

(N)s
, ) where the indicator functior® (k) of subdomain() has
N Nk fs(k )a(k’) been introduced. Substituting E(O) into Eq. (27) we fi-

3
conditional probability density for an after-scattering state C= 4m°N-n (29)
and this product is integrated over all before-scattering s 17
states. Using Eqgs(21) and (20) we obtain for the after- b)\(kb)
scattering distribution: ,
we find forng :
f Mf) | | SkkD | 1 f@) Ot
<)\>s )\(k) nQ_4ﬂ_3 Q( ) S( )
_ ' ’ S0 alkp)/N(k
ZJ[)\(k)fS(k)}[l fo(k )]S(k,k)dk _((@a)) _ ZpOq(kp)/A(Kp) 30

A (k)

(N)s nally obtain for the average distribution function:
3 A
AK)f(K)| [1-fo(K)IS(k.K') =m0 Z60alke)A () 31
- Q (31
dk Vg S o/ (Kp)
(N)s A(K)
N F(K)] ok )S(K k) V. SOLUTION OF THE FIRST ORDER EQUATION
S S 1
* J [ (\)s ] A(K) dk Equation(7) contains terms that depend on the stationary
distribution functionf (k). These are the free and scattering
NK)Fs(k) | | S(k,k") terms. The stationary distribution function is the solution of
= f - = dk= - Eqg. (6) and its shape can be arbitrary. This fact prevents an
<)\>s )\(k) Eim<7\>s

analytical solution foi, and a numerical integration is nec-
essary. However, in this work we apply a rejection technique
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to solve Eq.(7). In Sec. Il we have introduced a new dif- This means that one half of the elastic scattering events will

ferential scattering rat& [see Eq.(9)], and now we define

another differential scattering rate according to the following

expression:
So(k’,k)=S(k’,k)+S(k,k"). (32
The corresponding total scattering rate is
No(k)=A(k)+\* (k), (33

where\* stands for the total backward-scattering rate

S*(k,k")=S(k’,k),

(34
)\*(k)zf S*(k,k")dk’.
From Egs.(9) and(32) it follows that
So(k’,k)=S(k’ k). (35)

To solve Eq.(7) we generate a wave vectér using the
differential scattering rat8q(k’,k). The condition of accep-
tance takes the following form:

r-Sok’ kK)<S(k’ k), (36)

not be accepted in the rejection scheme given above.

Using Eq.(17) and the combined rejection technique
developed for the secondary trajectorieee inequalities
(38)—(40)], the new small-signal Monte Carlo algorithm in-
cluding the Pauli exclusion principle can be formulated as
follows:

(1) Simulate the nonlinear Boltzmann equation umijlhas
converged.

(2) Follow a main trajectory for one free flight. Store the
before-scattering state ik,, and realize a scattering
event fromk, to k, .

(3) Start a trajectoryK *(t) from k, and another trajectory
K™ (t) from k;,.

(4) Follow both trajectories for timd using the rejection
scheme based on the acceptance conditi@8s—(40).
At equidistant times; addA[K *(t;)] to a histogramy;”
andA[K ™ (t;)] to a histogramy; .

(5) Continue with the second step uritilk points have been
generated.

(6) Calculate the time discrete impulse

(A)im(t) = (Eim(A)/NEg) ( —ay).

response as

wherer is a random number evenly distributed between 0

and 1. The last inequality may be rewritten as follows:
r-[S(k’,k)+S(k, k") ]<[1-fs(k)]S(k" k)

+1s(k)S(k,k"). (37

Let us consider some special cases of the last inequali
when the scattering process can be split into the sum of th

emission and absorption of some quasipartidigisonons,

plasmons, etg. Then, considering a forward transition from
k' to k it can be easily shown that one of the following
rejection conditions has to be checked depending on whethgr
an absorption or emission process has occurred. For absor%(—:

tion processes it takes the form:

r-|1+ Neg <[1—f4(Kk)] Neg +f4(k) (38)
|7 Negt1 ST Nggt 1 S
whereas for emission processes we check
Neg Neg
r-_1+ Nogt 1 <1—fyk)+fy(k) Nt 1' (39

VI. ZERO ELECTRIC FIELD LIMIT AND PHYSICAL
INTERPRETATION OF THE METHOD

As mentioned in the previous section, in highly degen-
erate semiconductors the kinetic behavior can reverse and the

L%ackward processes will dominate over the forward ones.

his effect can be more clearly explained by considering the
zero electric field limit of the theory constructed above.
When the electric field tends to zero, the equilibrium
distribution function can be assumed and represented by the
ermi—Dirac(FD) distribution function in the case of par-
les with fractional spin:

feo(e)= (41)

whereE; denotes the Fermi energy,stands for an electron
energy, andT, is the equilibrium temperature equal to the
lattice temperature. Since the stationary distribution is
known, it is not necessary to solve the zero order(Eg.As

whereNg, denotes the equilibrium number of quasiparticles.can be seen from Ed41), in equilibrium the distribution

For example, whemM,/(Negt+1)<1 we obtain from Egs.
(38) and (39) that for the nondegenerate casg<l, emis-

function depends directly on the carrier energy and only in-
directly on the wave vector through the€k) relation. This

sion processes will be dominantly accepted while absorptiofact allows us to significantly simplify Eq(10) using the
processes will be mostly rejected. This means that the kinetifermi golden rulélt

behavior is determined by emission processes. On the other
side for the degenerate case, wher 1, it follows from the
same relations that emission processes will be mostly re-
jected while the probability of the acceptance of absorption o )
processes increases. Finally, it should be noted that for elad1@king use of the delta function in the last expression and
tic processeq S(k,k')=S(k’,k)] the rejection condition @ssuming the independence\4f andAe fromk andk’, we
(37) takes the following form: rewrite Eq.(10) in the following manner:

\%
Stkik')= g7 |Va[2ole(k ) —e() = Ael.  (42)

r<s (40 N(K)=[1— fep(en) IN(K) + fep(e)\* (K), (43
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forward - i
s> 8§, T sealtering 5 0.8 ®— G ensemble at 0.7 ps
<
E, : t =—a G’ ensemble at 0.7 ps|-
g 0.6 ——- G ensemble at 8.0 ps :
a) b) E y
L . ) . g ‘== G ensemble at 8.0 ps
FIG. 1. Schematic illustration of the scattering processes at high degeneracy. -2 X
2 0.49
0.
) . , g A }
wheree; denotes the final carrier energy. Equatidd) rep- TN
. . . N\
resents a linear combination of the total forward- and 0200 Nt ™ TN
backward-scattering rates. o “~ :\,\ +
In the nondegenerate cadgp(e)<<1, we obtain) (k) -
=A(k), which means that the scattering processes are 0 10 20 30 0
energy (meV)

mostly determined by the forward-scattering rate, and thus

the algorithm developed in Ref. 5 for nondegenerate statisFIG. 3. Energy distribution functions for the two carrier ensembles in GaAs.
tics is restored. On the other hand, for highly degeneratéow electron densityn=10" cm™>.

semiconductors,fgp(e)~1, the scattering processes are

dominantly backward,(k)=)* (k). In the case of interme- his means that lower energy levels are already occupied by
diate degeneracy both forward and backward scattering co p_articles,fFD(e)%1 [see Fig. 1b)] and, due to the Pauli

tributes to the kinetics. lusi nciol ttering to th levels |
The fact that backward scattering is dominant in pro-eXC usion principie, scattering to these energy 1evels Is quan-
mechanically forbidden.

cesses where an initial state of an electron has lower energ}ymu ina th hd ibed in thi i field

than in its final state can formally be explained from theNI nts'ng rle ap:JrO?tChm e;ncr; g.nm thls Sic |0I_n, aZTrO. '2

point of view of the principle of detailed balance given by onte 2a 0 aigor Inciuding the maull exciusio
principlet? has been constructed, which gives the whole mo-

fhe symmetry refation bility tensor in semiconductors with an arbitrary level of
e(k’ e(k degeneracy:
S(k,k')-exp(k(T)>=s*(k,k')-exp(k(T)>_ (44) ¢ y
B0 Blo (1) Setn=0, w=0,

As can be seen from E@44), forward transitions from high (2) select initial statek arbitrarily,
to low energy levels are preferred, and backward transition§3) compute a sum of weightsw=w+[1—"fgp(€)]
from low to high energy levels prevail. x[vj(k)/X(k)],

It should be mentioned that at high degeneracy the backy) select a free-flight timé ;= —In(r)/A(k) and add time
ward scattering rate is dominant, and thus the probability of integral to estimatorn=n+wo T;, or use the expected

scattering to higher energy levels is larger than to lower en- L _ ~
ergy levels, as schematically shown in Figa)l Physically, value of the time integra=n-+w[v;/A(K)].

3 A
24000 II ‘\ i / \ —— G ensemble at 0.0 ps
h /
l\! [' \\ 0.2 ©—@ G’ cnsemble at 0.0 ps
22000 / 7%
—_ { “ Y — - - —_ B— G ensemble at 0.7 ps
& f 4 Il I A4 Nos? N =5
Z ] v v/ \!_3/ \ A—A G ensemble at 0.7 ps
« I 1 i A
g 20000 " V1 ¥ g 0.15 — —=- G ensemble at 8.0 ps
=~ ] v =
2 ]' V! 8 P \. «—+= G ensemble at 8.0 ps
é 18000 1 i 7 Y
7 h g i W
8 ! E 0.1 [ LN
& 16000 e ! 3
= — — - non-degenerate 4 l \3‘\\
> d =
14000 cgenerate 0.05 / i ‘ \
/ \ \
12000 ! NG\
0 20 40 60 80 50 100 0
t(ps) energy (meV)

FIG. 2. Velocity step response in degenerate=(0 cm %) GaAs. E FIG. 4. Energy distribution functions for the two carrier ensembles in GaAs.
3

=120 V/cm. High electron densityn=10" cm™3.
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IiIG. 5. Velocity step response in degenerate=(10' cm™3) GaAs. Eg FIG. 7. Energy step response in degenerate= {0 cm 3) GaAs. E,
=30 Viem. =120 V/cm.
(5) perform scattering. If the mechanism was isotropic, reset ) ) .
weight: w=0 tropy. Scattering on phonons includes both intravalley and
(6) continue with step(3) untl N k points have been mter\_/alley transitions. Acoustic phonons are treated as an
generated elastic mechanism.
(7) calculate component of zero field mobility tensor as  First, we present simulations for GaAs at 25 K to dem-
9 —q(X)n/(k ToN) onstrate the transit time resonance effect in the nondegener-
ij= BlolN)-

ate material and its behavior in the case of high degeneracy.
In step (5) we use the fact that time integration can be!N Fig. 2 we show the velocity step response at an electric
stopped after the first velocity randomizing scattering evenfield Es=120 V/cm, electron density=10"° cm™?, and the
has occurred, because in this case the correlation of the triifluénce of the Pauli exclusion principle. It can be seen that
jectory’s initial velocity with the after-scattering velocity is When degeneracy is taken into account, the oscillations are

lost. suppressed. On the other hand, the stationary values are
nearly the same for both algorithms. The significant reduc-
VIl. RESULTS tion of the oscillations can be explained in terms of the en-

. . . ergy distribution functions shown in Figs. 3 and 4 for both
For our Monte Carlo simulations we only consider elec-cases. Under degenerate conditions the distribution functions

trons in the first conduction band, which is described by arpverlap much stronger due to the exclusion principle. The
analytical modéf!* including nonparabolicity and aniso-

2.0x10° 7.0x107
degenerate 6.0¢1 015 — degenerate
o~ s ,/’_\\\ — — - non-degenerate - non—degenerate
> 1.5x10° 7 X
3 /-\ N o 5.0x10"
% | \\\ Ng sh
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5 \ / ‘ \\
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FIG. 6. Energy step response in degenerate 10'® cm™3) GaAs. Eg FIG. 8. Differential velocity in degeneratent10?cm ) Si. Eg
=30 V/cm. =5000 V/cm.
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FIG. 11. Energy distribution functions for the two carrier ensembles in Si.

FIG. 9. Differential energy in degeneraten£10®tcm %) Si. Eg High electron densityn= 102 cm™3.
=5000 V/cm.

the energy distribution functions. The small difference of the
difference between the two ensembles disappears faster Histripution functions of the two ensembles in the non-
the case when the Pauli principle is considered. As the imdegenerate algorithnésee Fig. 10 is responsible for the
pulse response is equal to the difference of the mean valuggeak oscillation, while for the degenerate algorithm the two
of the two ensembles, it explains the weaker oscillations insnsemples have the same distributions at the very beginning,
the degenerate case. The small difference of the stationagg is shown in Fig. 11. In addition, in the degenerate case the
values is related to the high absolute value of the electrigjistribution functions significantly shift to higher energies as
field. In Fig. 5 it is shown that this difference is more sig- the |ower energy levels are occupied and scattering to these
nificant at a lower absolute value of the electric fi#ld  gtates is forbidden.
=30 V/cm. Figures 6 and 7 demonstrate the energy step
response aE;=30 V/cm andE;=120 V/cm, respectively. VIIl. CONCLUSION

As a second example we present results for Si at 300K,
E<=5 kV/cm,n=10? cm3. Figures 8 and 9 show the dif- A Monte Carlo algorithm for small-signal analysis in-

ferential velocity and differential energy, respectively. Thecluding the quantum mechanical Pauli exclusion principle
differential velocity obtained from the nondegenerate algohas been presented. The original nonlinear Boltzmann equa-
rithm displays a weak oscillatory character, while the differ-tion has been split into two equations. To obtain the station-
ential velocity obtained by the degenerate algorithm does ndry distribution and the initial distributions for the two car-

show any oscillations. This again can be explained analyzinger ensembles the algorithm of Bosi and Jacobbmis been
applied. To solve the first order equation a combined rejec-

tion technique has been developed. The physical essence of
the algorithm has been clarified by considering the zero elec-

0.06 ;
1
/,r\-'\ - tric field limit. It has been shown that the Pauli exclusion
TN — G ensemble at 0.0 ps L . L . .
0.05 I, \\\ . principle reverses the carrier kinetics in highly degenerate
. ) . . .
/ \\‘ === G ensemble at 0.0 ps semiconductors. Finally, some results of the small-signal
\\ analysis have been presented for highly degenerate semicon-
0.04 \ ductors.
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