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Monte Carlo method for modeling of small signal response
including the Pauli exclusion principle

S. Smirnov,a) H. Kosina, M. Nedjalkov, and S. Selberherr
Institute for Microelectronics, TU Vienna, Gusshausstrasse 27-29, A-1040 Vienna, Austria

~Received 25 June 2003; accepted 15 August 2003!

A Monte Carlo method for small signal analysis of degenerate semiconductors is presented. The
response to an electric field impulse parallel to the stationary electric field is obtained using the
nonlinear Boltzmann kinetic equation with the Pauli exclusion principle in the scattering operator.
After linearization of the Boltzmann equation a new Monte Carlo algorithm for small signal analysis
of the nonlinear Boltzmann kinetic equation is constructed using an integral representation of the
first order equation. The generation of initial distributions for two carrier ensembles which arise in
the method is performed by simulating a main trajectory to solve the zero order equation. The
normalization of the static distribution function is discussed. To clarify the physical interpretation of
our algorithm we consider the limiting case of vanishing electric field and show that in this case
kinetic processes are determined by a linear combination of forward and backward scattering rates.
It is shown that at high degeneracy backward scattering processes are dominant, while forward
transitions are quantum mechanically forbidden under such conditions due to the Pauli exclusion
principle. Finally, the small signal Monte Carlo algorithm is formulated and the results obtained for
degenerate semiconductors are discussed. ©2003 American Institute of Physics.
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I. INTRODUCTION

To investigate the small signal response of the carrier
semiconductors, different Monte Carlo techniques are wid
applied to solve the time-dependent Boltzmann equation1–5

There are also small signal approaches based on the vel
and energy balance equations.6 However, a significant advan
tage of Monte Carlo methods based on the Boltzmann kin
equation is that they allow a comprehensive treatmen
kinetic phenomena within the quasiclassical approach
account, in a rather simple way, for accurate band structu
Additionally, the quantum mechanical Pauli exclusion pr
ciple can be taken into consideration to study the small
nal response of carriers in degenerate semiconductors.

When the carrier density is very high the Pauli exclus
principle becomes important and may have a strong in
ence on different differential response functions which rel
a small perturbation of the electric field and a mean value
some physical quantity. The influence is expected to
strong and it has been pointed out4 that the behavior of im-
pulse response functions is determined by the overlap of
distributions of two carrier ensembles introduced in the f
malism. This overlap is much stronger when the Pauli exc
sion principle is included due to the additional statistic
broadening. When degenerate statistics is taken into acco
the Boltzmann equation is nonlinear, which makes its so
tion more difficult. One way to solve it is the well know
method based on the Legendre polynomial expansion.7 In
this work, however, we employ the Monte Carlo approac

We extend an approach presented in Ref. 4 for the sm
signal response analysis and construct a Monte Carlo a

a!Electronic mail: smirnov@iue.tuwien.ac.at
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rithm for small signal analysis in degenerate semiconduct
We also clarify the physical aspects of the algorithm by co
sidering the zero field limit and present a zero field mobil
Monte Carlo algorithm, which in the limiting case of nond
generate statistics gives the algorithm developed in Ref.

The article is organized as follows. In Sec. II the Bolt
mann kinetic equation including the Pauli exclusion princip
is linearized. The integral form of the first order equation
constructed in Sec. III. The possibility of generating initi
distributions for two particle ensembles is discussed in S
IV. In Sec. V we develop a combined rejection technique
solve the first order equation, and then the Monte Carlo
gorithm is formulated. A physical interpretation of th
method considering the zero field limit is given in Sec. V
Next, the zero field Monte Carlo algorithm taking the Pa
exclusion principle into account is presented. Finally, resu
obtained for degenerate semiconductors are presented in
VII.

II. LINEARIZED FORM OF THE BOLTZMANN
EQUATION

We start from the Boltzmann kinetic equation, whic
takes the Pauli exclusion principle into account. The lat
ensures that two electrons do not occupy the same quan
state. The case of a homogeneous bulk semiconductor is
sidered, and thus the space dependence of the distribu
function is neglected. The differential scattering rates are
sumed to be space and time invariant. With these conditi
the Boltzmann equation takes the following form:

] f ~k,t !

]t
1

qE~ t !

\
•¹ f ~k,t !5Q@ f #~k,t !, ~1!
1 © 2003 American Institute of Physics
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with the scattering operatorQ@ f #(k,t) given by the expres-
sion:

Q@ f #~k,t !5E f ~k8,t !@12 f ~k,t !#S~k8,k!dk8

2E f ~k,t !@12 f ~k8,t !#S~k,k8!dk8. ~2!

Here,E(t) is the electric field,q is the particle charge, an
S(k8,k) stands for the differential scattering rate.

In order to linearize Eq.~1!, we write the electric field in
the form

E~ t !5Es1E1~ t !, ~3!

whereEs denotes a stationary field andE1(t) a small pertur-
bation superimposed on the stationary field. It is assum
that this small perturbation of the electric field causes a sm
perturbation of the distribution function, which is written a
follows:

f ~k,t !5 f s~k!1 f 1~k,t !, ~4!

where f s(k) is a stationary distribution function andf 1(k,t)
a small deviation from the stationary distribution. Substit
ing Eq. ~4! into Eq. ~2!, the scattering operatorQ@ f #(k,t)
takes the form

Q@ f #~k,t !5E @ f s~k8!1 f 1~k8,t !#

3@12 f s~k!2 f 1~k,t !#S~k8,k!dk8

2E @ f s~k!1 f 1~k,t !#@12 f s~k8!

2 f 1~k8,t !#S~k,k8!dk8. ~5!

Collecting terms of zero and first order we derive the z
order equation

q

\
Es•“ f s~k!5@12 f s~k!#E f s~k8!S~k8,k!dk8

2 f s~k!E @12 f s~k8!#S~k,k8!dk8, ~6!

and the first order equation

] f 1~k,t !

]t
1

q

\
Es•“ f 1~k,t !52

q

\
E1~ t !•¹ f s~k!

1Q(1)@ f #~k,t !, ~7!

where we have introduced the notation:

Q1@ f #~k,t !5@12 f s~k!#E f 1~k8,t !S~k8,k!dk8

2 f 1~k,t !E @12 f s~k8!#S~k,k8!dk8

2 f 1~k,t !E f s~k8!S~k8,k!dk8

1 f s~k!E f 1~k8,t !S~k,k8!dk8. ~8!
Downloaded 29 Oct 2003 to 128.130.68.74. Redistribution subject to A
d
ll

-

o

Equation~7! is linear with respect tof 1(k,t) and represents a
kinetic equation, which differs from the usual form of th
Boltzmann equation, whereas the stationary Boltzmann
~6! is nonlinear with respect tof s(k). The differences of Eq.
~7! from the conventional form of the Boltzmann equatio
are the additional term on the right-hand side proportiona
E1 and the expression for the scattering operator, which
a more complex form. Both terms depend on the station
distribution f s(k). Finally, it should be noted that in gener
both Eqs.~6! and ~7! must be solved to find the respons
characteristics.

III. INTEGRAL REPRESENTATION OF THE
BOLTZMANN-LIKE EQUATION

To construct a Monte Carlo algorithm we reformula
Eq. ~7! as an integral equation. For this purpose we introdu
a new differential scattering rateS̃(k8,k) and a new total
scattering ratel̃(k), respectively,

S̃~k8,k!5@12 f s~k!#S~k8,k!1 f s~k!S~k,k8!, ~9!

l̃~k!5E $@12 f s~k8!#S~k,k8!1 f s~k8!S~k8,k!%dk8

5E S̃~k,k8!dk8. ~10!

It is worth noting that the similarity with the standard Bol
zmann equation is only formal, as both differential and to
scattering rates are now functionals of the stationary dis
bution function, which is the solution of the equation of ze
order ~6!.

With these definitions the scattering operator of the fi
order formally takes on the conventional form:

Q1@ f #~k,t !5E f 1~k8,t !S̃~k8,k!dk82 f 1~k,t !l̃~k!,

~11!

and the Boltzmann-like equation can be rewritten as follow

] f 1~k,t !

]t
1

q

\
Es•“ f 1~k,t !

5E f 1~k8,t !S̃~k8,k!dk82 f 1~k,t !l̃~k!

2
q

\
E1~ t !•“ f s~k!. ~12!

We derive the integral form of this equation using techniqu
described in Ref. 8. Introducing a phase space trajec
K (t8)5k2(q/\)Es(t2t8), which is the solution of New-
ton’s equation, and taking into account that the perturbat
is switched on att50, and thusf 1@K (t0),t0#50 for t0,0,
we obtain the following integral form:
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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f 1@K ~ t !,t#5E
0

t

dt8E dk8 f 1~k8,t8!S̃@k8,K ~ t8!#

3expS 2E
t8

t

l̃@K ~y!#dyD 2
q

\ E
0

t

E1~ t8!

3@“ f s#@K ~ t8!#•expS 2E
t8

t

l̃@K ~y!#dyD dt8.

~13!

Finally, we assume an impulse like excitation of the elec
field, E1(t)5d(t)Eim , and obtain

f 1@K ~ t !,t#5E
0

t

dt8E dk8 f 1~k8,t8!S̃@k8,K ~ t8!#

3expS 2E
t8

t

l̃@K ~y!#dyD 1G@K ~0!#

3expS 2E
0

t

l̃@K ~y!#dyD , ~14!

where

G~k!52
q

\
Eim•“ f s~k!. ~15!

The essential difference of this integral representation fr
the one of the nondegenerate approach consists in the
pearance of the new differential scattering rateS̃(k8,k) and
total scattering ratel̃(k). Another difference from the inte
gral form of the Boltzmann equation for the nondegener
case is common to both approaches and is reflected by
additional free term on the right-hand side, which in gene
cannot be treated as an initial distribution, because it can
on negative values.

IV. SOLUTION OF THE ZERO ORDER EQUATION

To solve the nonlinear Boltzmann equation including t
Pauli exclusion principle Monte Carlo algorithms based o
rejection technique have been developed by Bosi
Jacoboni9 and later by Lugli and Ferry.10 We adopt the first
algorithm to solve the zero order equation. In the followin
we show that this algorithm can also be used to generate
initial distributionsG1 andG2 of the two carrier ensembles
which appear in the first order equation. The normalizat
of the stationary distribution required for the correct reje
tion is discussed.

A. Initial distributions of the two ensembles

Using the same method as suggested in Ref. 4, the
term in Eq.~14! is split into two positive functionsG1 and
G2, which are related toG through the relation:G5G1

2G2. These two positive functions are considered as ini
distributions of two carrier ensembles, which contain t
same numbers of particles. To find the initial distributions
the case of a longitudinal perturbation we use the zero o
Eq. ~6!, which gives together with Eq.~9!:
Downloaded 29 Oct 2003 to 128.130.68.74. Redistribution subject to A
c

ap-

e
he
l

ke

a
d

,
he

n
-

ee

l
e
r
er

G~k!5
Eim

Es
•S l~k! f s~k!2E f s~k8!S̃~k8,k!dk8 D , ~16!

where l(k)5*S(k,k8)dk8. The last expression sugges
splitting G into two positive functions. From the balanc
condition stated by the zero order Eq.~6! it follows ^l̃&s

5^l&s , where the stationary statistical average is defined
^¯&s5* f s(k)¯dk. Then, the initial distributions can b
written as

G15
Eim

Es
^l̃&sH l~k! f s~k!

^l&s
J ,

~17!

G25
Eim

Es

^l̃&sE H l̃~k! f s~k!

^l̃&s
J H S̃~k,k8!

l̃~k!
J dk.

As can be seen from Eq.~17!, G1 represents the normalize
before-scattering distribution function for a particle traje
tory whose free-flight times are determined by the conv
tional scattering ratel(k), while G2 gives the normalized
after-scattering distribution function for a particle trajecto
constructed usingS̃(k,k8) and l̃(k), respectively.

B. Integral form of the nonlinear Boltzmann equation

To show how to generate the distributionsG1 and G2

we use the integral representation of the stationary Bo
mann Eq.~6!. To accomplish this we first reformulate th
scattering operator in Eq.~6!:

Q@ f s#5@12 f s~k!#E f s~k8!S~k8,k!dk8

1E f s~k8!a~k8!l~k8!d~k2k8!dk82 f s~k!

3H E @12 f s~k8!#S~k,k8!dk81a~k!l~k!J , ~18!

where we have introduced the self-scattering ratea(k), and
the delta function guarantees that the self-scattering does
change an electron state. Free-flight times are generated
ing the total scattering ratel(k) and we require the self
scattering rate to fulfill the equality

l~k!5E @12 f s~k8!#S~k,k8!dk81a~k!l~k!. ~19!

This gives for the self-scattering rate the following expre
sion:

a~k!5
1

l~k!
E f s~k8!S~k,k8!dk8. ~20!

We introduce an additional differential scattering ra
Ŝ(k,k8):

Ŝ~k,k8!5@12 f s~k8!#S~k,k8!1a~k!l~k!d~k2k8!,
~21!

E Ŝ~k,k8!

l~k!
dk851. ~22!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Now, taking into account Eqs.~19! and ~21!, the scattering
operator~18! takes the conventional form:

Q@ f s#5E f s~k8!Ŝ~k8,k!dk82 f s~k!l~k!. ~23!

Using the Neumann series of the forward equation we de
as an example the second iteration term as:8

f V
(2)5E

0

`

dt2E
t2

`

dt1E
t1

`

dt0E dk2
aE dk1

aE dk i•$ f 0~k i !%

3H expS 2E
0

t2
l@K2~y!#dyD l@K2~ t2!#

Ŝ@K2~ t2!,k2
a#

l@K2~ t2!# J
3H expS 2E

t2

t1
l@K1~y!#dyD l@K1~ t1!#

Ŝ@K1~ t1!,k1
a#

l@K1~ t1!# J
3H expS 2E

t1

t0
l@K ~y!#dyD l@K ~ t0!#J

3Q~ t2t1!QV@K ~ t !#Q~ t02t !. ~24!

Here thek-space is assumed to be divided in a mesh with
elementary volumeDk , QV(k) is the indicator defined as
function with values unity ifkPV and zero otherwise,Q(t)
is the step function andf V

(2)5* f (2)(k,t)QV(k)dk. From Eq.
~24! we see that if the free-flight time is calculated accord
to the scattering ratel(k), the conditional probability den
sity for an after-scattering statek8 from the initial statek is
equal toŜ(k,k8)/l(k).

Within the algorithm presented in Ref. 9 the befor
scattering distribution function is equal tol(k) f s(k)/^l&s ,
which gives the distributionG1. In order to find the distri-
bution function of the after-scattering states the befo
scattering distribution function should be multiplied by t
conditional probability density for an after-scattering sta
and this product is integrated over all before-scatter
states. Using Eqs.~21! and ~20! we obtain for the after-
scattering distribution:

E H l~k! f s~k!

^l&s
J H Ŝ~k,k8!

l~k!
J dk

5E H l~k! f s~k!

^l&s
J @12 f s~k8!#S~k,k8!

l~k!
dk

1
l~k8! f s~k8!

^l&s

a~k8!

5E H l~k! f s~k!

^l&s
J @12 f s~k8!#S~k,k8!

l~k!
dk

1E H l~k! f s~k!

^l&s
J f s~k8!S~k8,k!

l~k!
dk

5E H l̃~k! f s~k!

^l̃&s
J H S̃~k,k8!

l̃~k!
J dk5

Es

Eim^l̃&s

G2~k8!,

~25!
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which is normalized to unity. This means that we can gen
ate initial distributionsG1 and G2 by introduction of the
main trajectory, which is constructed using the algorith
from Ref. 9 to solve Eq.~6!. Then, for each main iteration
two carrier ensembles with initial distributionsG1 and
G2 evolve in time according to Eq.~7! for the secondary
trajectories.

C. Normalization of the stationary distribution
function

The stationary distribution functionf s(k) must be prop-
erly normalized as a probability, 0, f s(k),1 to guarantee
the correct rejection of scattering events. Thek space is di-
vided into subdomainsV of sizeVV5(Dk)3. In the follow-
ing, f̄ V stands for the average distribution function inV for a
given valley andn is the contribution to the electron densi
from the same valley. In each subdomain the electron den
is

nV5
1

4p3 E
V

f s~k!dk, ~26!

and the average distribution function is given as

f̄ V5
*V f s~k!dk

VV
5

4p3nV

VV
. ~27!

Using the before-scattering estimation for the statisti
average

^^A&&5C
1

N (
b

A~kb!

l~kb!
, ~28!

whereN is the number of electron-free flights and the no
malization constantC is given as

C5
4p3N•n

(b

1

l~kb!

, ~29!

we find for nV :

nV5
1

4p3 E QV~k! f s~k!dk

5
^^QV&&

4p3 5n•
(bQV~kb!/l~kb!

(b1/l~kb!
, ~30!

where the indicator functionQV(k) of subdomainV has
been introduced. Substituting Eq.~30! into Eq. ~27! we fi-
nally obtain for the average distribution function:

f̄ V5
4p3n

VV
•

(bQV~kb!/l~kb!

(b1/l~kb!
. ~31!

V. SOLUTION OF THE FIRST ORDER EQUATION

Equation~7! contains terms that depend on the station
distribution functionf s(k). These are the free and scatterin
terms. The stationary distribution function is the solution
Eq. ~6! and its shape can be arbitrary. This fact prevents
analytical solution forl̃, and a numerical integration is nec
essary. However, in this work we apply a rejection techniq
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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to solve Eq.~7!. In Sec. III we have introduced a new di
ferential scattering rateS̃ @see Eq.~9!#, and now we define
another differential scattering rate according to the follow
expression:

S̃0~k8,k!5S~k8,k!1S~k,k8!. ~32!

The corresponding total scattering rate is

l̃0~k!5l~k!1l* ~k!, ~33!

wherel* stands for the total backward-scattering rate

S* ~k,k8!5S~k8,k!,
~34!

l* ~k!5E S* ~k,k8!dk8.

From Eqs.~9! and ~32! it follows that

S̃0~k8,k!>S̃~k8,k!. ~35!

To solve Eq.~7! we generate a wave vectork using the
differential scattering rateS0(k8,k). The condition of accep-
tance takes the following form:

r •S̃0~k8,k!,S̃~k8,k!, ~36!

where r is a random number evenly distributed between
and 1. The last inequality may be rewritten as follows:

r •@S~k8,k!1S~k,k8!#,@12 f s~k!#S~k8,k!

1 f s~k!S~k,k8!. ~37!

Let us consider some special cases of the last inequ
when the scattering process can be split into the sum of
emission and absorption of some quasiparticles~phonons,
plasmons, etc.!. Then, considering a forward transition fro
k8 to k it can be easily shown that one of the followin
rejection conditions has to be checked depending on whe
an absorption or emission process has occurred. For abs
tion processes it takes the form:

r •F11
Neq

Neq11G,@12 f s~k!#
Neq

Neq11
1 f s~k!, ~38!

whereas for emission processes we check

r •F11
Neq

Neq11G,12 f s~k!1 f s~k!
Neq

Neq11
, ~39!

whereNeq denotes the equilibrium number of quasiparticle
For example, whenNeq/(Neq11)!1 we obtain from Eqs.
~38! and ~39! that for the nondegenerate case,f s!1, emis-
sion processes will be dominantly accepted while absorp
processes will be mostly rejected. This means that the kin
behavior is determined by emission processes. On the o
side for the degenerate case, whenf s;1, it follows from the
same relations that emission processes will be mostly
jected while the probability of the acceptance of absorpt
processes increases. Finally, it should be noted that for e
tic processes@S(k,k8)5S(k8,k)# the rejection condition
~37! takes the following form:

r , 1
2. ~40!
Downloaded 29 Oct 2003 to 128.130.68.74. Redistribution subject to A
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This means that one half of the elastic scattering events
not be accepted in the rejection scheme given above.

Using Eq. ~17! and the combined rejection techniqu
developed for the secondary trajectories@see inequalities
~38!–~40!#, the new small-signal Monte Carlo algorithm in
cluding the Pauli exclusion principle can be formulated
follows:

~1! Simulate the nonlinear Boltzmann equation untilf s has
converged.

~2! Follow a main trajectory for one free flight. Store th
before-scattering state inkb , and realize a scattering
event fromkb to ka .

~3! Start a trajectoryK1(t) from kb and another trajectory
K2(t) from ka .

~4! Follow both trajectories for timeT using the rejection
scheme based on the acceptance conditions~38!–~40!.
At equidistant timest i addA@K1(t i)# to a histograma i

1

andA@K2(t i)# to a histograma i
2 .

~5! Continue with the second step untilN k points have been
generated.

~6! Calculate the time discrete impulse response
^A& im(t i)5(Eim^l&/NEs)(a i

12a i
2).

VI. ZERO ELECTRIC FIELD LIMIT AND PHYSICAL
INTERPRETATION OF THE METHOD

As mentioned in the previous section, in highly dege
erate semiconductors the kinetic behavior can reverse and
backward processes will dominate over the forward on
This effect can be more clearly explained by considering
zero electric field limit of the theory constructed above.

When the electric field tends to zero, the equilibriu
distribution function can be assumed and represented by
Fermi–Dirac~FD! distribution function in the case of par
ticles with fractional spin:

f FD~e!5
1

expF2
Ef2e

kBT0
11G , ~41!

whereEf denotes the Fermi energy,e stands for an electron
energy, andT0 is the equilibrium temperature equal to th
lattice temperature. Since the stationary distribution
known, it is not necessary to solve the zero order Eq.~6!. As
can be seen from Eq.~41!, in equilibrium the distribution
function depends directly on the carrier energy and only
directly on the wave vector through thee(k) relation. This
fact allows us to significantly simplify Eq.~10! using the
Fermi golden rule:11

S~k,k8!5
V

4p2\
uVf i u2d@e~k8!2e~k!6De#. ~42!

Making use of the delta function in the last expression a
assuming the independence ofVf i andDe from k andk8, we
rewrite Eq.~10! in the following manner:

l̃~k!5@12 f FD~e f !#l~k!1 f FD~e f !l* ~k!, ~43!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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wheree f denotes the final carrier energy. Equation~43! rep-
resents a linear combination of the total forward- a
backward-scattering rates.

In the nondegenerate case,f FD(e)!1, we obtainl̃(k)
5l(k), which means that the scattering processes
mostly determined by the forward-scattering rate, and t
the algorithm developed in Ref. 5 for nondegenerate sta
tics is restored. On the other hand, for highly degene
semiconductors,f FD(e);1, the scattering processes a
dominantly backwardl̃(k)5l* (k). In the case of interme
diate degeneracy both forward and backward scattering
tributes to the kinetics.

The fact that backward scattering is dominant in p
cesses where an initial state of an electron has lower en
than in its final state can formally be explained from t
point of view of the principle of detailed balance given b
the symmetry relation

S~k,k8!•expS e~k8!

kBT0
D5S* ~k,k8!•expS e~k!

kBT0
D . ~44!

As can be seen from Eq.~44!, forward transitions from high
to low energy levels are preferred, and backward transiti
from low to high energy levels prevail.

It should be mentioned that at high degeneracy the ba
ward scattering rate is dominant, and thus the probability
scattering to higher energy levels is larger than to lower
ergy levels, as schematically shown in Fig. 1~a!. Physically,

FIG. 1. Schematic illustration of the scattering processes at high degene

FIG. 2. Velocity step response in degenerate (n51018 cm23) GaAs. Es

5120 V/cm.
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this means that lower energy levels are already occupied
particles, f FD(e)'1 @see Fig. 1~b!# and, due to the Paul
exclusion principle, scattering to these energy levels is qu
tum mechanically forbidden.

Using the approach described in this section, a zero fi
Monte Carlo algorithm including the Pauli exclusio
principle12 has been constructed, which gives the whole m
bility tensor in semiconductors with an arbitrary level
degeneracy:

~1! Setn50, w50,
~2! select initial statek arbitrarily,
~3! compute a sum of weights:w5w1@12 f FD(e)#

3@v j (k)/l̃(k)#,
~4! select a free-flight timet̃ f52 ln(r)/l̃(k) and add time

integral to estimator:n5n1wv i t̃ f , or use the expected
value of the time integral:n5n1w@v i /l̃(k)#.

cy.

FIG. 3. Energy distribution functions for the two carrier ensembles in Ga
Low electron density:n51014 cm23.

FIG. 4. Energy distribution functions for the two carrier ensembles in Ga
High electron density:n51018 cm23.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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~5! perform scattering. If the mechanism was isotropic, re
weight: w50,

~6! continue with step~3! until N k points have been
generated,

~7! calculate component of zero field mobility tensor
m i j 5q^l̃&n/(kBT0N).

In step ~5! we use the fact that time integration can
stopped after the first velocity randomizing scattering ev
has occurred, because in this case the correlation of the
jectory’s initial velocity with the after-scattering velocity i
lost.

VII. RESULTS

For our Monte Carlo simulations we only consider ele
trons in the first conduction band, which is described by
analytical model13,14 including nonparabolicity and aniso

FIG. 5. Velocity step response in degenerate (n51018 cm23) GaAs. Es

530 V/cm.

FIG. 6. Energy step response in degenerate (n51018 cm23) GaAs. Es

530 V/cm.
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tropy. Scattering on phonons includes both intravalley a
intervalley transitions. Acoustic phonons are treated as
elastic mechanism.

First, we present simulations for GaAs at 25 K to de
onstrate the transit time resonance effect in the nondege
ate material and its behavior in the case of high degener
In Fig. 2 we show the velocity step response at an elec
field Es5120 V/cm, electron densityn51018 cm23, and the
influence of the Pauli exclusion principle. It can be seen t
when degeneracy is taken into account, the oscillations
suppressed. On the other hand, the stationary values
nearly the same for both algorithms. The significant red
tion of the oscillations can be explained in terms of the e
ergy distribution functions shown in Figs. 3 and 4 for bo
cases. Under degenerate conditions the distribution funct
overlap much stronger due to the exclusion principle. T

FIG. 7. Energy step response in degenerate (n51018 cm23) GaAs. Es

5120 V/cm.

FIG. 8. Differential velocity in degenerate (n51021 cm23) Si. Es

55000 V/cm.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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difference between the two ensembles disappears fast
the case when the Pauli principle is considered. As the
pulse response is equal to the difference of the mean va
of the two ensembles, it explains the weaker oscillations
the degenerate case. The small difference of the statio
values is related to the high absolute value of the elec
field. In Fig. 5 it is shown that this difference is more si
nificant at a lower absolute value of the electric fieldEs

530 V/cm. Figures 6 and 7 demonstrate the energy s
response atEs530 V/cm andEs5120 V/cm, respectively.

As a second example we present results for Si at 30
Es55 kV/cm, n51021 cm23. Figures 8 and 9 show the dif
ferential velocity and differential energy, respectively. T
differential velocity obtained from the nondegenerate al
rithm displays a weak oscillatory character, while the diff
ential velocity obtained by the degenerate algorithm does
show any oscillations. This again can be explained analyz

FIG. 9. Differential energy in degenerate (n51021 cm23) Si. Es

55000 V/cm.

FIG. 10. Energy distribution functions for the two carrier ensembles in
Low electron density:n51014 cm23.
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the energy distribution functions. The small difference of t
distribution functions of the two ensembles in the no
degenerate algorithm~see Fig. 10! is responsible for the
weak oscillation, while for the degenerate algorithm the t
ensembles have the same distributions at the very beginn
as is shown in Fig. 11. In addition, in the degenerate case
distribution functions significantly shift to higher energies
the lower energy levels are occupied and scattering to th
states is forbidden.

VIII. CONCLUSION

A Monte Carlo algorithm for small-signal analysis in
cluding the quantum mechanical Pauli exclusion princi
has been presented. The original nonlinear Boltzmann eq
tion has been split into two equations. To obtain the stati
ary distribution and the initial distributions for the two ca
rier ensembles the algorithm of Bosi and Jacoboni9 has been
applied. To solve the first order equation a combined rej
tion technique has been developed. The physical essenc
the algorithm has been clarified by considering the zero e
tric field limit. It has been shown that the Pauli exclusio
principle reverses the carrier kinetics in highly degener
semiconductors. Finally, some results of the small-sig
analysis have been presented for highly degenerate sem
ductors.
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