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Abstract. A Monte Carlo method for calculation of the carrier mobil-
ity in degenerate bulk semiconductors at zero electric field is presented.
The method is obtained as a limiting case of an existing small-signal
approach replacing the distribution function by the Fermi-Dirac distri-
bution which is valid at zero electric field. The general form of the Boltz-
mann equation which takes into account the Pauli exclusion principle
in the scattering term is used to derive the integral representation of
a Boltzmann-like equation for a small perturbation of the distribution
function. The method allows calculation of the whole mobility tensor in
comparison with the one particle Monte Carlo algorithm which is tradi-
tionally used to compute low field carrier mobility.

1 Introduction

The low field carrier mobility of a bulk semiconductor is an important kinetic
property of a semiconductor. It is used to analyze the carrier transport in semi-
conductor devices at low applied voltages and enters expressions for high field
mobility models as an additional parameter. Thus the knowledge of the low field
carrier mobility and its correct dependence on the material properties such as
the doping concentration are necessary to adequately simulate carrier transport
in semiconductor devices.

The standard approach for obtaining the low field carrier mobility is a single
particle Monte Carlo method. Within this method in order to calculate the low
field mobility along the direction of the electric field one should carefully choose
the magnitude of the applied electric field. On the one hand side, the magnitude
of the electric field must be as low as possible. In principle it is desirable to have
zero electric field. However, there exist limitations related to the increase of the
variance of standard Monte Carlo methods. On the other hand side, the field
must not be too high to avoid a mobility reduction due to carrier heating.

In addition to these disadvantages, the standard approaches only give one
component of the carrier mobility namely the component along the direction of
the electric field. For isotropic conditions it does not make any difference since
the mobility tensor is diagonal and all diagonal values are equal. However when
anisotropy is present, for example in strained semiconductors, the mobility tensor
elements may be different and several Monte Carlo simulations are required to
obtain all the components of the tensor.
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To overcome these problems associated with standard Monte Carlo meth-
ods a new Monte Carlo algorithm has been suggested recently [1], which solves
the Boltzmann equation at exact zero field and represents a limiting case of a
small signal algorithm obtained in [2]. One of the most remarkable properties of
the algorithm is the absence of self-scattering that allows to significantly reduce
calculation time and achieve very good accuracy of the results. This method
is restricted to the simulation of low doped semiconductors. The quantum me-
chanical Pauli exclusion principle is not included in the scattering term of the
Boltzmann equation used for the derivation of the algorithm. As a result there
are limitations on the doping level of materials analyzed by this technique. It
allows to obtain excellent results at low and intermediate doping levels while
results obtained for higher doping levels where the effects of degenerate statis-
tics are more pronounced are incorrect. As the standard Monte Carlo methods
exhibit a very high variance especially in degenerate case, it is thus desirable to
have a powerful technique to analyze the carrier mobility at high doping levels.

In this work we present a zero field algorithm to account for degenerate
statistics. The Pauli exclusion principle is taken into consideration in the scat-
tering term of the Boltzmann equation. As a result the Boltzmann equation
becomes nonlinear. Using this nonlinear equation we derive a generalized zero
field algorithm applicable for the analysis of highly doped materials.

2 Nonlinear Boltzmann Equation

and its Linearized Form

Let us consider a bulk homogenous semiconductor. Then we can neglect the
space dependence of the distribution function and the differential scattering
rate. We also assume the differential scattering rate to be time invariant. With
these conditions the time dependent Boltzmann equation taking into account
the Pauli exclusion principle takes the following form:

∂f(k, t)

∂t
+

qE(t)

h̄
∇f(k, t) = Q[f ](k, t), (1)

where E(t) is an electric field and q is the particle charge. Q[f ](k, t) represents
the scattering operator which is given by the following expression:

Q[f ](k, t) =

∫
f(k

′

, t)[1 − f(k, t)]S(k
′

, k) dk
′

−

−

∫
f(k, t)[1 − f(k

′

, t)]S(k, k
′

) dk
′

,

(2)

where S(k
′

, k) stands for the differential scattering rate. Thus S(k
′

, k)dk is the
scattering rate from a state with wave vector k

′

to states in dk around k, f(k, t)
is the distribution function and the factors [1−f(k, t)] mean that the final state
must not be occupied according to the Pauli exclusion principle. As can be seen
from (2), there are terms f(k, t)f(k

′

, t) which render the equation nonlinear.
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Only when the condition f(k, t) � 1 is valid the factors [1 − f(k, t)] can be
replaced by unity and the equation takes the usual linear form.

To linearize (1) we write the electric field in the form:

E(t) = Es + E1(t), (3)

where Es stands for a stationary field and E1(t) denotes a small perturbation
which is superimposed on a stationary field. It is assumed that this small per-
turbation of the electric field causes a small perturbation of the distribution
function which can be written as follows:

f(k, t) = fs(k) + f1(k, t), (4)

where fs(k) is a stationary distribution function and f1(k, t) is a small deviation
from a stationary distribution. Substituting (4) into (2) the scattering operator
Q[f ](k, t) takes the form:

Q[f ](k, t) =

∫
(fs(k

′

) + f1(k
′

, t))[1 − fs(k) − f1(k, t)]S(k
′

, k) dk
′

−

−

∫
(fs(k) + f1(k, t))[1 − fs(k

′

) − f1(k
′

, t)]S(k, k
′

) dk
′

.

(5)

It should be noted that in spite of the fact that f1(k, t) � 1 one should take
care when linearizing terms such as 1 − fs(k) − f1(k, t) as especially in the
degenerate case it may happen that the inequality 1− fs(k) � f1(k, t) becomes
valid because of [1 − fs(k)] → 0.

Neglecting terms of second order we derive the zeroth order equation:

q

h̄
Es∇fs(k) =[1 − fs(k)]

∫
fs(k

′

)S(k
′

, k) dk
′

−

−fs(k)

∫
[1 − fs(k

′

)]S(k, k
′

) dk
′

,

(6)

and the first order equation:

∂f1(k, t)

∂t
+

q

h̄
Es∇f1(k, t) = −

q

h̄
E1(t)∇fs(k) + Q(1)[f ](k, t), (7)

where we introduced the notation Q(1)[f ](k, t) for the first order scattering op-
erator which has the form:

Q(1)[f ](k, t) = [1 − fs(k)]

∫
f1(k

′

, t)S(k
′

, k) dk
′

−

− f1(k, t)

∫
[1 − fs(k

′

)]S(k, k
′

) dk
′

− f1(k, t)

∫
fs(k

′

)S(k
′

, k) dk
′

+

+ fs(k)

∫
f1(k

′

, t)S(k, k
′

) dk
′

.

(8)
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Equation (7) is linear with respect to f1(k, t), it is a kinetic equation which differs
from the usual form of the Boltzmann equation. The first difference is related
to the presence of the additional term on the right hand side being the term
proportional to E1 which additionally depends on the stationary distribution.
The second difference is in the expression for the scattering operator which now
has a more complex form and also depends on the stationary distribution.

3 Integral Form of the First Order Equation

To construct a new Monte Carlo algorithm we reformulate the Boltzmann equa-
tion of the first order into integral form. For this purpose we introduce a new
differential scattering rate and new total scattering rate defined by the following
expressions:

S̃(k
′

, k) = [1 − fs(k)]S(k
′

, k) + fs(k)S(k, k
′

), (9)

λ̃(k) =

∫
([1 − fs(k)]S(k, k

′

) + fs(k
′

)S(k
′

, k)) dk
′

=

∫
S̃(k, k

′

) dk
′

. (10)

It is worth noting that the similarity with the standard Boltzmann equation is
only formal as both, differential scattering rate and total scattering rate, are
now functionals of the stationary distribution function which is the solution of
the equation of zero order (6).

With these definitions the scattering operator of the first order Q(1)[f ](k, t)
formally takes the conventional form:

Q(1)[f ](k, t) =

∫
f1(k

′

, t)S̃(k
′

, k) dk
′

− f1(k, t)λ̃(k), (11)

and the Boltzmann-like equation can be rewritten as follows:

∂f1(k, t)

∂t
+

q

h̄
Es∇f1(k, t) =

∫
f1(k

′

, t)S̃(k
′

, k) dk
′

−

− f1(k, t)λ̃(k) −
q

h̄
E1(t)∇fs(k).

(12)

We derive the integral form of this equation using techniques described in
[3]. Introducing a phase space trajectory K(t

′

) = k − q
h̄
Es(t − t

′

) which is the
solution of Newton’s equation, and taking into account that f1(K(t0), t0) = 0
for t0 < 0 we obtain the following integral form:

f1(K(t), t) =

=

∫ t

0

dt
′

∫
dk

′

f1(k
′

, t)S̃(k
′

, K(t
′

)) · exp

(
−

∫ t

t
′

λ̃[K(y)] dy

)
−

−
q

h̄

∫ t

0

E1(t
′

)[∇fs](K(t
′

)) · exp

(
−

∫ t

t
′

λ̃[K(y)] dy

)
dt

′

.

(13)
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Finally we assume an impulse like excitation of the electric field, E1(t) =
δ(t)Eim, and obtain:

f1(K(t), t) =

=

∫ t

0

dt
′

∫
dk

′

f1(k
′

, t)S̃(k
′

, K(t
′

)) · exp

(
−

∫ t

t
′

λ̃[K(y)] dy

)
+

+ G(K(0)) exp

(
−

∫ t

0

λ̃[K(y)] dy

)
,

(14)

where
G(k) = −

q

h̄
Eim∇fs(k). (15)

The essential difference of this integral representation from the one of the non-
degenerate approach consists in the appearance of the new differential scattering
rate S̃(k

′

, k) and of the total scattering rate λ̃(k). Another difference which is
common for both approaches is the additional free term on the right hand side
which in general cannot be treated as an initial distribution because it also takes
negative values.

4 Zero Field Approach

When the electric field tends to zero, the distribution function approaches its
equilibrium which is in case of particles with fractional spin represented by the
Fermi-Dirac distribution function:

fFD(ε) =
1

exp

[
−

Ef−ε

kBT0

+ 1

] , (16)

where Ef denotes the Fermi energy, ε stands for an electron energy and T0 is an
equilibrium temperature equal to the lattice temperature. Since the stationary
distribution is known, there is no necessity to solve the zeroth order equation
(6). As can be seen from (16), in equilibrium the distribution function depends
only on the carrier energy and not on the wave vector. This fact allows one to
significantly simplify (10) using the Fermi golden rule [4]:

S(k, k
′

) =
V

2π2h̄
|Vfi|

2δ[ε(k
′

) − ε(k) ± ∆ε]. (17)

Making use of the delta function in the last expression we can rewrite (10) in
the following manner:

λ̃(k) = [1 − fFD(εf )]λ(k) + fFD(εf )λ∗(k), (18)

where εf denotes the final carrier energy and we introduced the backward scat-

tering rate S∗(k, k
′

) = S(k
′

, k) and λ∗(k) =
∫

S∗(k, k
′

) dk
′

. (18) represents a
linear combination of the forward and backward total scattering rates. In the
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Fig. 1. Schematic illustration of the scattering processes at high degeneracy.

non-degenerate case, fF−D(ε) � 1, we obtain λ̃(k) = λ(k) that means that
scattering processes are mostly determined by the forward scattering rate and
thus the algorithm developed in [1] for nondegenerate statistics is restored. On
the other hand side for highly doped semiconductors, fF−D(ε) ∼ 1, scattering

processes are dominantly backward λ̃(k) = λ∗(k). In case of intermediate doping
levels both forward and backward scattering contribute to the kinetics. It should
be also mentioned that as at high doping levels the backward scattering rate is
dominant, the probability to scatter to higher energy states is larger than to
lower energy states as schematically shown in Fig.1(a). This means that lower
energy levels are already occupied by particles i.e. fF−D(ε) ≈ 1 (see Fig.1(b))
and, due to the Pauli exclusion principle, scattering to these energy levels is
quantum mechanically forbidden.

The additional free term in (14) cannot be considered as an initial distribution
because function G(k) may take negative values. However, in case of zero electric
field the stationary distribution is known analytically and we can calculate G(k)
explicitly:

G(k) =
q

kBT0
Eim · v

exp

[
−

Ef−ε

kBT0

]

(
exp

[
−

Ef−ε

kBT0

]
+ 1

)2 , (19)

where v denotes the group velocity. This expression can be rewritten in the
following manner:

G(k) =
qEim〈λ̃〉

kBT0

v(k)[1 − fFD(ε)]

λ̃(k)

{
λ̃(k)fFD(ε)

〈λ̃〉

}
(20)

where the term in curly brackets represents the normalized distribution function
of the before-scattering states. The Monte Carlo algorithm contains the same
steps as those in [1] except that the whole kinetics must be now considered

in terms of S̃(k, k
′

) and λ̃(k) instead of S(k, k
′

) and λ(k). It may be seen by
derivation of the second iteration term of the Neumann series for (14) using the
forward formulation to obtain the ensemble Monte Carlo algorithm:
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(f
(2)
1 )Ω =

∫ t

0

dt2

∫ t

t2

dt1

∫
dk

a
2

∫
dk

a
1

∫
dki{G(ki)}·

·

{
exp

(
−

∫ t2

0

λ̃[K2(y) dy]

)
λ̃[K2(t2)]

}{
S̃[K2(t2), k

a
2 ]

λ̃[K2(t2)]

}
·

·

{
exp

(
−

∫ t1

t2

λ̃[K1(y) dy]

)
λ̃[K1(t1)]

}{
S̃[K1(t1), k

a
1 ]

λ̃[K1(t1)]

}
·

· exp

(
−

∫ t

t1

λ̃[K(y)] dy

)
ΘΩ(K(t)),

(21)

where k
a stands for an after-scattering wave vector and ki denotes an initial wave

vector. The quantity
eS[k,k

′

]
eλ[k]

represents a normalized after-scattering distribution.

As can be seen from (9) and (10) it is normalized to unity. As it follows from
(21), during Monte Carlo simulation a particle trajectory is constructed in terms

of new quantities S̃ and λ̃.
Another difference from the non-degenerate zero field algorithm is that the

weight coefficient v(k)
eλ(k)

must be multiplied by the factor [1 − fFD(ε)].

With these modifications the steps of the algorithm are as follows:

1. Set ν = 0, w = 0.
2. Select initial state k arbitrarily.
3. Compute a sum of weights: w = w + [1 − fFD(ε)][vj(k)/λ̃(k)].

4. Select a free-flight time t̃f = − ln(r)/λ̃(k) and add time integral to estimator:
ν = ν + wvi t̃f or use the expected value of the time integral:

ν = ν + w[vi/λ̃(k)].
5. Perform scattering. If mechanism was isotropic, reset weight: w = 0.
6. Continue with step 3 until N k-points have been generated.
7. Calculate component of zero field mobility tensor as µij = q〈λ̃〉ν/(kBT0N).

5 Results and Discussion

As the first example we calculate the doping dependence of the zero field mobility
in silicon. The analytical band structure reported in [5] is adopted. The scat-
tering processes included are acoustic deformation potential scattering, ionized
impurity scattering [6] and plasmon scattering [7]. Ionized impurity scattering
is treated as an isotropic process [8] which effectively reduces small-angle scat-
tering.

Fig.2 shows two electron mobility curves obtained by the new zero field al-
gorithm and the one particle Monte Carlo algorithm, respectively. The Pauli
exclusion principle at low electric field has been included in the one particle
Monte Carlo method using the Fermi-Dirac distribution. This leads to a prefac-
tor (1− fFD(εf )) for all scattering processes within the low field approach. The
value of the electric field used for the one particle approach has been chosen to
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Fig. 2. Electron zero field and low field mobilities in Si.

be 1 kV/cm. The other physical parameters of both algorithms are the same.
As can be seen from Figure 2, the curve obtained with the one particle Monte
Carlo method has some variance at low and high doping levels while the zero
field curve appears rather smooth. Moreover the calculation time for the new
zero field algorithm is about 20% of the one particle Monte Carlo method.

Fig.3 shows the electron mobility as a function of doping concentration for
GaAs obtained by both algorithms. The degeneracy effects are more pronounced
in this semiconductor because of the smaller effective mass of electrons in the
Γ valley. The absolute value of the electric field is the same as for silicon. As is
seen from this figure, in addition to a high variance at low doping levels the one
particle Monte Carlo gives an incorrect behavior of the mobility at high doping
levels. This is related to the fact that the value 1 kV/cm of the electric field is
still high from the viewpoint of using the Fermi-Dirac distribution with lattice
temperature within the one particle algorithm. In order to obtain correct results
at high doping levels by the one particle Monte Carlo method it is necessary
to reduce further the magnitude of the electric field. However in this case the
variance would increase considerably leading to an extremely long computation
time.

6 Conclusion

A zero field Monte Carlo algorithm accounting for the quantum mechanical
Pauli exclusion principle has been presented. The method has been derived from
the integral representation of a linearized Boltzmann-like equation. It has been
shown that particle trajectories are constructed in terms of a new scattering rate
which in general represents a linear combination of the forward and backward
scattering rates. It has been also pointed out that for energies below the Fermi
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Fig. 3. Electron zero field and low field mobilities in GaAs.

level kinetic properties are predominantly determined by the backward scattering
rate while for energy levels above the Fermi level the forward scattering rate is
dominant. In the latter case the non-degenerate zero field algorithm is recovered.
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