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A Note on the Symplectic Integration of the Nonlinear Schrödinger Equation

CLEMENS HEITZINGER AND CHRISTIAN RINGHOFER
Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA

Abstract. Numerically solving the nonlinear Schrödinger equation and being able to treat arbitrary space depen-
dent potentials permits many application in the realm of quantum mechanics. The long-term stability of a numerical
method and its conservation properties is an important feature since it assures that the underlying physics of the
solution are respected and it ensures that the numerical result is correct also for small time spans. In this paper we de-
scribe symplectic integrators for the nonlinear Schrödinger equation with arbitrary potentials and perform numerical
experiments comparing different approaches and highlighting their respective advantages and disadvantages.
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1. Introduction

The motivation for considering the time-dependent
Schrödinger equation and its solutions for large time
spans stems from the fact that quantum-mechanical ef-
fects will play a dominating role in nano-scale semi-
conductor devices and in new device concepts be-
yond traditional CMOS based on silicon technology
(e.g., single-electron devices and resonant-tunneling
devices) [1]. Numerical schemes of this kind are also a
prerequisite for the transient simulation of proposed de-
vices like quantum dots and quantum cellular automata
[2,3].

The wave equation or the time-dependent Schrödin-
ger equation

ih
∂ψ(r, t)

∂t
= − h2

2m
∇2ψ(r, t) + V0 · ψ(r, t)

describes the non-relativistic quantum mechanics for
particles without spin. Here a particle of mass m moves
in a field represented by the potential energy func-
tion V0. Scaling this equation yields the equations con-
sidered in this work.

In the following we consider the Schrödinger equa-
tion in the form

iut + uxx + 2uV (t, x, u) = 0.

V (t, x, u) denotes the potential and in the case of
the Schrödinger equation with cubic nonlinearity in
one space dimension it is of the form V (t, x, u) =
|u|2 + V1(t, x), where V1(t, x) is an arbitrary real
valued function. More precisely, we are interested
in numerical solutions of the initial boundary value
problem

u : [0, T ] × [0, 1] → C

iut + uxx + 2uV (t, x, u) = 0

u(0, x) given

periodic boundary conditions for x ∈ [0, 1]

obtained by methods of geometric integration.
A review of the analytical properties of the so-

lutions of the cubic nonlinear Schrödinger equation
can be found in [4] which also discusses the connec-
tion of this PDE to dynamical systems. This nonlin-
ear equation shows interesting phenomena like soli-
tary waves and solitons, finite-time blow-up, chaotic
evolution in deterministic PDEs, and periodic waves
and quasi-periodic wave-trains. It also has applica-
tions to nonlinear optics, laser dynamics, and pho-
tonics [5,6]. Implementors of simulators for quantum
dots and similar applications will be more interested
in the equation with the linear potential term, to which
the same methods can be applied in a straightforward
manner.
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Runge–Kutta methods and linear multi-step methods
for ODEs have reached a high level of maturity and are
generally available program codes. Although Runge–
Kutta methods can conserve linear and quadratic invari-
ants, no Runge–Kutta method can conserve all polyno-
mial invariants of degree three and higher [7]. This
motivates the search for new methods which respect
the geometric properties of the solutions.

The main idea of the geometric integration of ODEs
and PDEs is that the geometry of the equation to be
solved should be respected by the numerical method,
i.e., invariants of the equation are also conserved by the
numerical integrator [7–10].

The method of Poisson integrators, a generalization
of symplectic integrators, will be used to derive implicit
finite difference schemes for the problem above. The
paper is organized into an introduction to symplectic
integrators for Hamiltonian systems in Section 2, a re-
capitulation of Poisson integrators and their application
to the initial boundary value problem in Sections 3 and
4, and finally several numerical results for the nonlinear
Schrödinger equation are presented in Section 5.

2. Symplectic Integrators

We start by defining the notion of symplectic (i.e., area
preserving) functions. A linear function is defined to be
symplectic if it conserves oriented area as defined by
the parallelogram spanned by two vectors. Hence a dif-
ferentiable function is called symplectic if its Jacobian
is everywhere symplectic.

There is an interesting connection between symplec-
tic functions and Hamiltonian systems, i.e., systems of
the form

ṗ = −∇q H (p, q)

q̇ = ∇p H (p, q),

where p and q are vectors denoting momentum and
position, respectively. H (p, q) is the Hamiltonian and
a first integral of the system. The following theorem is
due to Poincaré [7,11].

Theorem 2.1. Let H (p, q) be a twice continuously
differentiable function on U ⊂ R

2d defining a Hamilto-
nian system. Then the flow ϕt of the Hamiltonian system
(i.e., the mapping that advances the solution by time)
is a symplectic transformation (wherever it is defined)
for all t .

The converse is also true:

Theorem 2.2. Let f : U → R
2d be a continuously

differentiable function. Then the system ẏ = f (y) is
locally Hamiltonian (i.e., it can locally be written in
the form of a Hamiltonian system) if and only if its flow
ϕt (y) is symplectic for all y ∈ U and for all sufficiently
small t .

Because of the characteristic symplectic nature of
the flow of a Hamiltonian system, it is natural to search
for numerical methods sharing this property. Hence we
extend the definition of symplecticity to numerical one-
step methods.

Definition 2.3. A numerical one-step method is called
symplectic, if the one-step map yn+1 = �h(yn) is sym-
plectic whenever the method is applied to a smooth
Hamiltonian system.

Examples of symplectic one-step methods are the
symplectic Euler scheme

pn+1 = pn − h
∂ H

∂q
(pn+1, qn)

qn+1 = qn + h
∂ H

∂p
(pn+1, qn)

which is of order 1. The same holds for its adjoint
method

pn+1 = pn − h
∂ H

∂q
(pn, qn+1)

qn+1 = qn + h
∂ H

∂p
(pn, qn+1).

The implicit mid-point rule

pn+1 = pn − h
∂ H

∂q

(
(pn+1 + pn)/2, (qn+1 + qn)/2

)

qn+1 = qn + h
∂ H

∂p

(
(pn+1 + pn)/2, (qn+1 + qn)/2

)

is a symplectic method of order 2. Furthermore com-
positions of symplectic methods are again symplectic
methods, which is one way to construct higher-order
symplectic schemes.

Examples of symplectic Gauss collocation (or
Runge–Kutta) methods are the following. If s is the
degree of the collocation polynomial, then the Gauss
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Table 1. Butcher tableaus of Gauss collocation methods of order 4 and 6.

1/2 − √
3/6 1/4 1/4 − √

3/6

1/2 + √
3/6 1/4 + √

3/6 1/4

1/2 1/2

1/2 − √
15/10 5/36 2/9 − √

15/15 5/36 − √
15/30

1/2 5/36 + √
15/24 2/9 5/36 − √

15/24

1/2 + √
15/10 5/36 + √

15/30 2/9 + √
15/15 5/36

5/18 4/9 5/18

collocation methods are of order 2s. For s = 1 we again
have the implicit midpoint rule

1/2 1/2
1

, (1)

and the methods for s = 2 (order 4) and s = 3 (order 6)
are shown in Table 1.

The conservation property of symplectic methods is
condensed in the following important result obtained
by backward error analysis [7,12]. After truncation, the
modified Hamiltonian is

H̃ (y) = H (y) + hm Hm+1(y) + · · · + hN−1 HN (y),

where m is the order of the method.

Theorem 2.4 (Long Term Energy Conservation). If
a symplectic numerical method of order m with step
size h is applied to a Hamiltonian system with analytic
H : D → R (where D ⊂ R

2d ) and the numerical solu-
tion remains in a compact set K ⊂ D, then there are
h0 and N (h) such that

H̃ (yn) = H̃ (y0) + O(e−h0/2h)

H (yn) = H (y0) + O(hm)

over exponentially long time intervals nh ≤ eh0/2h.

It is one of the favorable properties of symplectic meth-
ods that these equations hold for exponentially long
time intervals. For a non-symplectic method the sec-
ond equation would generally read H (yn) = H (y0) +
O(nhm) meaning that the error would generally in-
crease linearly with time.

3. Poisson Integrators

Unfortunately many systems of practical importance,
especially those for quantum-mechanical systems, can-
not be written as Hamiltonian systems. Generalizing
the ideas from Section 2 to systems of the form

ẏ = P(y)∇ H (y), (2)

where P(y) is a Poisson bracket, leads to Poisson inte-
grators. In the previous section we had y = (p, q) and
P(y) = J−1, where

J :=
(

0 I

−I 0

)
(3)

and I is the identity matrix. In this section we summa-
rize the generalization to more general P(y). It is based
on the Darboux–Lie Theorem and hence classic work
by Clebsch, Darboux, Jacobi, and Lie [7, 13–16].

We start with some definitions.

Definition 3.1 (Poisson Bracket). Let P(y) = pi j (y)
(i, j ∈ {1, . . . , n}) be a smooth matrix-valued function.
If

{F, G}(y) := ∇F(y)T P(y)∇G(y)

=
n∑

i=1

n∑
j=1

∂ F(y)

∂yi
pi j (y)

∂G(y)

∂y j

is bilinear, skew-symmetric ({F, G} = −{G, F}), and
satisfies Leibniz’s rule

{F · G, H} = F · {G, H} + G · {F, H}

and the Jacobi identity

{{F, G}, H
} + {{H, F}, G

} + {{G, H}, F
} = 0
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for sufficiently smooth F , G, and H , then {F, G}(y) is
called the Poisson bracket of F and G.

Definition 3.2 (Poisson System). If P(y) represents a
Poisson bracket, then

ẏ = P(y)∇ H (y)

is called a Poisson system. Again H is called the
Hamiltonian.

Lemma 3.3. P(y) represents a Poisson bracket if and
only if P(y) is a skew-symmetric matrix and the con-
dition ∀∀∀i, j, k:

n∑
ν=1

(
∂pi j (y)

∂yν

pνk(y) + ∂p jk(y)

∂yν

pνi (y)

+ ∂pki (y)

∂yν

pν j (y)

)
= 0

for the Jacobi identity is satisfied. (Because of the struc-
ture of the Poisson bracket as a sum it is always bilinear
and and always satisfies Leibniz’s rule.)

It is trivial to check that J defined in (3) indeed repre-
sents a Poisson bracket.

The Darboux–Lie Theorem answers the question
which coordinate transformation of a Poisson sys-
tem yields the simplest possible form—or canonical
form—of P(y).

Definition 3.4 (Canonical Form). A Poisson system
represented by P(y) is said to be in canonical form if
it is of the form

P(y) =
(

J−1 0

0 0

)
.

Theorem 3.5 (Darboux–Lie). Let P(y) represent a
Poisson system. If P(y) is of constant rank n −r = 2m
in a neighborhood of y0 ∈ R

n, then there are func-
tions P1(y), . . . , Pm(y), Q1(y), . . . , Qm(y), and (the
so-called Casimirs) C1(y), . . . , Cr (y) so that

{Pi , Pj } = 0 {Pi , Q j } = −δi j {Pi , Cl} = 0

{Qi , Pj } = δi j {Qi , Q j } = 0 {Qi , Cl} = 0

{Ck, Pj } = 0 {Ck, Q j } = 0 {Ck, Cl} = 0

holds in a neighborhood of y0. The gradients of Pi ,

Qi , and Ck are linearly independent and hence y �→

(Pi (y), Qi (y), Ck(y)) is a local change of coordinates
to canonical form.

The proof is constructive and, roughly speaking, works
by iterating over the rows and columns of the structure
matrix to find suitable coordinates Pi and Qi as solu-
tions of linear PDEs.

Important properties of Hamiltonian systems are
also true for Poisson systems. First the Hamiltonian
of the Poisson system is again a first integral. Anal-
ogously to symplectic maps, it is possible to define
Poisson maps. Then in analogy to Theorem 2.1 it can
be proven under certain smoothness assumptions that
a system is locally a Poisson system, whose structure
matrix is a Poisson bracket, if and only if its flow is
a Poisson map and respects the Casimirs of the trans-
formation of the Poisson bracket to canonical form.
Again, as in the case of Definition 2.3, this motivates
the following definition.

Definition 3.6. A numerical one-step method is called
a Poisson integrator for a Poisson system with struc-
ture matrix P(y), if the one-step map yn+1 = �h(yn)
is a Poisson map whenever it is applied to the Poisson
system and if �h respects the Casimirs of the transfor-
mation of P(y) to canonical form.

Clearly a numeric integrator can only be a Poisson in-
tegrator for certain structure matrices P(y).

Table 2 summarizes how the concepts for
Hamiltonian systems, i.e., systems with canonical
Poisson bracket, and systems with general Poisson
bracket relate to one another. These considerations give
rise to a Poisson integrator for Poisson systems. In sum-
mary it consists of the following steps:

1. First find the transformation ϕ(y) := (Pi (y), Qi (y),
Ck(y)) to canonical form for the given structure ma-
trix P(y) by using Theorem 3.5.

Table 2. The column on the left hand side lists some concepts for
Hamiltonian systems and the corresponding concepts for general
Poisson systems are shown on the right hand side. The transformation
to canonical Poisson form allows to translate between these two.

Hamiltonian system Poisson system

Canonical form General Poisson bracket

Symplectic transformation Poisson map

Flow is symplectic Flow is a Poisson map
and respects the Casimirs

Symplectic integrator Poisson integrator
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2. Define zn := ϕ(yn) and apply a symplectic integra-
tor to the transformed system which has now a struc-
ture matrix in canonical form (cf. Definition 3.4).

3. Transform back to the original coordinates yn =
ϕ−1(zn).

4. Poisson Integrators for the Nonlinear
Schrödinger Equation

We now carry out the ideas of the previous sections for
the nonlinear equation in its most general form

iut + uxx + 2αu(|u|2 + V1(t, x)) = 0

for periodic boundary conditions. V1 is a real val-
ued function and α ∈ R\{0}. Depending on how the
nonlinear term is discretized, one can write the sys-
tem in Hamiltonian form in straightforward manner
(u �→ wk , Section 4.1) or one arrives at the Ablowitz–
Ladik model (2u �→ wk−1 + wk+1, Section 4.2).

4.1. A Hamiltonian for the Canonical Form

Discretizing the derivations with respect to the space
variable first in an equidistant manner, we obtain the
equations

i
∂wk

∂t
+ wk+1 − 2wk + wk−1

�x2

+ 2αwk(|wk |2 + V1(t, x)) = 0

in the new variableswk , k ∈ {1, . . . , N }. In the next step
we split the new variables wk into real and imaginary
parts via wk = uk + ivk . This yields

∂uk

∂t
= − 1

�x2
(vk+1 − 2vk + vk−1)

− 2αvk
(
u2

k + v2
k + V1(t, x)

)
∂vk

∂t
= 1

�x2
(uk+1 − 2uk + uk−1)

+ 2αuk
(
u2

k + v2
k + V1(t, x)

)
.

Introducing the notation u := (u1, . . . , uN ) and v :=
(v1, . . . , vN ) and defining the Hamiltonian

H (u, v) := 1

�x2

N∑
k=1

(
ukuk−1 − u2

k + vkvk−1 − v2
k

)

+ α

2

N∑
k=1

(
u2

k + v2
k + V1(t, x)

)2

we obtain

(
u̇

v̇

)
=

(
0 −I

I 0

)(∇u H (u, v)

∇v H (u, v)

)
,

and have thus written the system in canonical form.

4.2. A Transformation for the Ablowitz–Ladik Model

To arrive at the Ablowitz-Ladik model, we now dis-
cretize the nonlinear term using 2u �→ wk−1 + wk+1

[17, 18] and obtain

i
∂wk

∂t
+ wk+1 − 2wk + wk−1

�x2

+ α(wk−1 + wk+1)(|wk |2 + V1(t, x)) = 0

in the new variables wk , k ∈ {1, . . . , N }. Again we
split the new variables wk into real and imaginary parts
via wk = uk + ivk . This yields

∂uk

∂t
= − 1

�x2
(vk+1 − 2vk + vk−1)

− α(vk+1 + vk−1)
(
u2

k + v2
k + V1(t, x)

)
∂vk

∂t
= 1

�x2
(uk+1 − 2uk + uk−1)

+ α(uk+1 + uk−1)
(
u2

k + v2
k + V1(t, x)

)
.

We can write these equations in the form of (2). In-
troducing the notation u := (u1, . . . , uN ) and v :=
(v1, . . . , vN ) we obtain

(
u̇

v̇

)
=

(
0 −D

D 0

)(∇u H (u, v)

∇v H (u, v)

)
,

where the entries of the diagonal matrix D are

dk := 1 + α�x2
(
u2

k + v2
k + V1(t, x)

)

and

H (u, v) := 1

�x2

N∑
k=1

(ukuk−1 + vkvk−1) − 1

α�x4

×
N∑

k=1

ln
(
1 + α�x2

(
u2

k + v2
k + V1(t, x)

))
.

Checking the conditions from Definition 3.1 via
Lemma 3.3 is straightforward. (This is in fact true for
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all systems where P(y) has the structure

P(y) =
(

0 −D

D 0

)
(4)

with D being a diagonal matrix.) Fortunately this sys-
tem is a Poisson system (Definition 3.2) and the theory
of Section 3 can be applied.

The transformation to canonical form is not unique
and will generally depend on V1, since dk depends
on V1. However, the transformation to canonical form
should be global, i.e., it should be identical for all time
steps; otherwise poor performance as time progresses
has to be expected [7]. Therefore we assume in the
following that V1(t, x) vanishes.

In order to find a transformation to canonical form,
we have to employ Theorem 3.5 and set y := (p1, . . . ,

pN , q1, . . . , qN ). For our P(y), the conventional pro-
cedure is to define Q1(y) := y1 and solve the linear
PDE{Q1, P1} = 1. This yields the transformation given
in [19] for a transformed Schrödinger equation, which
does not treat the variables u and v symmetrically.

Because of dk(u, v) = dk(v, u) and H (u, v) =
H (v, u) it is desirable to find a transformation so
that the relations pk(u, v) = pk(v, u) and qk(u, v) =
qk(v, u) hold for the new variables pk and qk . We
also use the ansatz P1 = P1(y1, yN+1) and Q1 =
Q1(y1, yN+1) which is equivalent to pk = pk(uk, vk)
and qk = qk(uk, vk). Due to the special structure (4)
of P(y), we have r = 0 in Theorem 3.5 and it can
be verified that are the conditions {Pi , Pj } = 0 and
{Qi , Q j } = 0 of Theorem 3.5 are always fulfilled for
structure matrices of this form. Therefore we have to
find symmetric solutions of {Q1, P1} = 1 which is
equivalent to

−∂ Q1

∂y1

∂ P1

∂yN+1
+ ∂ Q1

∂yN+1

∂ P1

∂y1
= 1

dk

= 1

1 + α�x2
(
y2

1 + y2
N+1

) .

The right hand side suggests the substitution z :=
α�x2(y2

1 + y2
N+1). The simple ansatz P1 = y1σ (z)

and Q1 = yN+1σ (z) leads to the ODE

σ 2 + 2zσσ ′ = 1

1 + z

which has the solution

σ (x) :=
√

ln(1 + x)

x
.

Hence we arrive at the transformation

pk := ukσ
(
α�x2

(
u2

k + v2
k

))
qk := vkσ

(
α�x2

(
u2

k + v2
k

))
,

which was also proposed in [7]. Its inverse transforma-
tion is

uk = pkτ
(
α�x2

(
p2

k + q2
k )

)
vk = qkτ

(
α�x2

(
p2

k + q2
k )

)
,

where

τ (x) :=
√

ex − 1

x
.

The inverse is found by observing that

α�x2
(

p2
k + q2

k

) = ln
(
1 + α�x2

(
u2

k + v2
k

))

and

eα�x2(p2
k +q2

k ) − 1 = α�x2
(
u2

k + v2
k

)
,

which leads to

eα�x2(p2
k +q2

k ) − 1

α�x2
(

p2
k + q2

k

)2 = α�x2
(
u2

k + v2
k

)
ln

(
1 + α�x2

(
u2

k + v2
k

))

and thus

τ
(
α�x2

(
p2

k + q2
k

)) = 1

σ
(
α�x2

(
u2

k + v2
k

)) .

Therefore we have uk = pk/σ (α�x2(u2
k + v2

k )) =
pkτ (α�x2(p2

k + q2
k )) and analogously vk = qk/

σ (α�x2(u2
k + v2

k )) = qkτ (α�x2(p2
k + q2

k )).
After the transformation the new Hamiltonian H in

the variables p and q reads

H (p, q) = 1

�x2

N∑
k=1

τ
(
α�x2

(
p2

k + q2
k

))

× τ
(
α�x2

(
p2

k−1 + q2
k−1

))
× (pk pk−1 + qkqk−1)

− 1

α�x4

N∑
k=1

ln
(
eα�x2(p2

k +q2
k )

+ α�x2V1(t, x)
)
.
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Symplectic schemes can now be applied to this Hamil-
tonian as described in Section 3.

5. Numerical Results

We use the numeric integrators to simulate physical
situations of interest. The first example is a recurrence
similar to those recently observed in optical fibers. The
second one is a soliton hitting a sidewall potential.
In the first example we compare the two Hamiltonian
based methods from Section 4.

The symplectic methods from Section 2 are im-
plicit. In the following examples experience showed
that fixed-point iteration yields much better results than
Newton methods, and hence fixed-point iteration was
used to obtain all of the numerical results.

5.1. A Recurrence

Recently, an optical Fermi–Pasta–Ulam recurrence
[20] was demonstrated experimentally in an optical
fiber [5,6]. In this example we consider the equa-

Figure 1. The absolute value of the solution found using the direct method for t ∈ [0, 1] and �t := 5 · 10−6.

tion with α := 1. We start from the initial condition
u(0, x) := π

√
2(1 + 1

10 cos(πx)) and use periodic
boundary conditions for x ∈ [−1, 1]. The symplec-
tic scheme for solving the ODEis the sixth order Gauss
collocation method (Table 1) and N := 50.

Using the scheme from Section 4.1 we obtain the
solution shown in Fig. 1. The value of the mass varies
between approximately 39.675809692379175 and
39.67580969237926 and is well-conserved. The same
is true for the Hamiltonian from Section 4.1, which
varies between approximately 10009.181417277767
and 10009.18141727789.

The scheme from Section 4.2 results in the solu-
tion shown in Fig. 2. The notable variation in mass is
shown in Fig. 3. The Hamiltonian from Section 4.2
is well-conserved and stays between approximately
9793.991350824712 and 9793.99135082576.

For reference Fig. 4 shows the solution found by
a first-same-as-last embedded pair of explicit Runge–
Kutta methods of order 6 using automatic time-step
control. The notable variation in mass is shown in
Fig. 5. The Hamiltonian (Section 4.2) is well-conserved
and lies between approximately 9793.989394666394
and 9793.991573444684.
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Figure 2. The absolute value of the solution found using the transformation to canonical form for t ∈ [0, 1/2] and �t := 5 · 10−6.

Figure 3. The variation in mass for t ∈ [0, 1/2] for the solution shown in Fig. 2.
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Figure 4. The absolute value of the solution found using a nonsymplectic scheme for t ∈ [0, 3/2].

Figure 5. The variation in mass for t ∈ [0, 3/2] for the solution shown in Fig. 4.
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The analytic solution is unstable. The smallest per-
turbations result in large differences and this explains
why the two solutions obtained from the two symplec-
tic schemes (Figs. 1 and 2) show different behavior. In-
terestingly, mass is not conserved by the scheme from
Section 4.2 as illustrated in Fig. 3.

5.2. A Soliton Hitting a Sidewall Potential

In this section we consider the nonlinear Schrödinger
equation with α := 1/2. Then a family of soliton solu-
tions for x ∈ R is given by

u(t, x) := β sech
β(x − ct)√

2
eic(x−ct)/2+iγ t ,

where c ∈ R is the speed of the soliton and γ ∈ R

a parameter so that β2 := 2(γ − c2/4) has a positive
solution for β.

In this example we chose V (x) := 1000 · Heaviside
(x − 5) as the outside potential, x ∈ [−5, 10], N :=
100, and �t := 1/2000. In total 40 000 time steps
were performed for t ∈ [0, 20]. For solving the
ODEwe used the sixth order Gauss collocation method
(Table 1). The soliton is given by c := 1/2 and γ := 10.

Figure 6. The real part, i.e., u(t, x), of a soliton being reflected by a sidewall potential.

Table 3. The mass during the solution shown in Figs. 6 and 7.

t Msymplectic(t) Mnon-symplectic(t)

0 12.609519759413226 12.609519759413226

1 12.609519759413207 12.60951975931592

2 12.60951975941322 12.609519757302492

3 12.609519759413228 12.609519758590878

4 12.60951975941322 12.609519759345906

5 12.609519759413214 12.609519757434894

6 12.609519759413224 12.609519758628501

7 12.60951975941322 12.609519758122492

8 12.60951975941322 12.609519758026519

9 12.609519759413208 12.609519757267089

10 12.609519759413217 12.60951975749231

11 12.609519759413233 12.609519757496281

12 12.60951975941322 12.60951975766336

13 12.609519759413217 12.609519757865685

14 12.609519759413228 12.609519757582799

15 12.609519759413223 12.60951975899348

16 12.609519759413224 12.609519758558559

17 12.609519759413223 12.609519759362419

18 12.609519759413214 12.609519759412708

19 12.609519759413216 12.609519758967746

20 12.60951975941322 12.609519759415354
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Figure 7. The imaginary part, i.e., v(t, x), of a soliton being reflected by a sidewall potential.

Figures 6 and 7 show the real and imaginary part
of the solution, respectively, as found by the scheme
from Section 4.1. The scheme from Section 4.2 is not
applicable, since the transformation to canonical Pois-
son form is not possible where the initial conditions are
sufficiently close to zero.

Table 3 compares mass conservation using double-
precision floating point numbers (about 16 digits). The
mass difference between initial and final time step is
Msymplectic(20) − M(0) ≈ −7.1 · 10−15.

The second column shows the mass of several time
steps of a solution obtained by a first-same-as-last em-
bedded pair of explicit Runge–Kutta methods of order 6
using automatic time-step control. The change in mass
is considerable.

6. Conclusion

Symplectic numerical methods are interesting because
of their conservation properties and their long-term sta-
bility for exponentially long time spans. When apply-
ing these methods to PDEs, it is however not obvious
how to write the ODE system obtained by the method
of lines as a Hamiltonian system. It may not be pos-

sible to write it as a Hamiltonian system or the form
as a Hamiltonian or Poisson system is not unique. Fur-
thermore in the case of a Poisson system, the choice
of the transformation to canonical form may influence
the numerical results as well.

Symplectic numerical schemes were given for the
nonlinear Schrödinger equation with a cubic nonlin-
earity. The nonlinear term of the equation may contain
a arbitrary space and time dependent potential.

As the numerical experiments in Section 5 for the cu-
bic nonlinear Schrödinger equation show, a mass con-
serving scheme is not necessarily obtained in this way.
Examples for different behaviors are given and each of
the numeric integrators has its respective advantages
and disadvantages when considering computation time,
accuracy, and conservation properties.
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Fermi, edited by E. Segrè (The University of Chicago, Chicago,
1965), vol. 2, pp. 977–988.


