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Abstract

We present an algorithm for smoothing results of three-dimensional Monte Carlo ion implantation simulations and
translating them from the grid used for the Monte Carlo simulation to an arbitrary unstructured three-dimensional
grid. This algorithm is important for joining various simulations of semiconductor manufacturing process steps,
where data have to be smoothed or transferred from one grid to another. Furthermore different grids must be used
since using ortho-grids is mandatory because of performance reasons for certain Monte Carlo simulation methods.
The algorithm is based on approximations by generalized Bernstein polynomials. This approach was put on a
mathematically sound basis by proving several properties of these polynomials. It does not suffer from the ill
effects of least squares fits of polynomials of fixed degree as known from the popular response surface method.
The smoothing algorithm which works very fast is described and in order to show its applicability, the results
of smoothing a three-dimensional real world implantation example are given and compared with those of a least
squares fit of a multivariate polynomial of degree 2, which yielded unusable results.
© 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

After a Monte Carlo simulation of ion implantation on an ortho-grid, the question arises how to
translate the resulting values, i.e., concentrations, to an unstructured grid. In the Monte Carlo simulation
an ortho-grid is commonly used in order to achieve workable simulation times, since calculating point
locations, i.e., tracing the position of ions, dominates performance. For other, subsequent simulations
via, e.g., the finite element method, it is mandatory to use different, unstructured grids. Furthermore, the
resulting values have to be smoothed in order to provide suitable input for the simulation of subsequent
process steps like diffusion.
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Thus an algorithm for smoothing Monte Carlo ion implantation results has to meet the following
demands: it has to work with unstructured target grids, it must provide suitable smoothing, and since
the number of grid points in the target grid is usually large, it must not be computationally
expensive.

One simple approach is to perform a least squares fit of a multivariate polynomial of fixed degree,
usually two, and to hope that this polynomial is a suitable approximation providing proper smooth-
ing. This is known as the response surface methodology (RSM)[5] approach and has been used to a
great extent in TCAD applications, but it does often not work satisfactorily (c.f.Fig. 4). In order to
solve this problem, generalizations of Bernstein polynomials were devised and their properties proven.
Hence a fast algorithm based on these polynomials was developed and applied to a real world ex-
ample. The RSM approach will be compared to the proposed algorithm since least squares fits are
a popular method: RSM has been used extensively in TCAD applications, e.g. in[2,4,6,9,12,14,16,
19,20].

Although it can be argued that the RSM approximation is based on a truncated Taylor series expansion
f(r + a) = ∑∞

k=0

(
(1/k!)(a · ∇r′)kf(r′)

)∣∣
r′=r

for a multivariate functionf , it is important to note that
this is a local approximation and quite different from a least squares fit for several points. In the Taylor
series expansion convergence occurs when the number of terms and thus the degree of the polynomial
increases, whereas in the RSM approach the degree of the approximating polynomial is fixed to an
arbitrary low value. Increasing the degree is possible of course, but the choice is still arbitrary and
the number of coefficients and thus the number of points required for the least squares fit increases
abundantly.

Furthermore, the RSM suffers from the fact that a polynomial of fixed degree cannot preserve the global
properties of the original function: the set of all polynomials of a certain fixed maximal degree is not
dense inC(X), X ⊂ R

p compact.
Although the RSM approach can be improved by transforming the variables before fitting the poly-

nomials, it has to be known a priori which transformations are useful and should be considered. If this
knowledge is available, it can of course be applied to other approximation approaches as well.

Finally, an advantage of the RSM approach is the simple structure of the approximations: it is easy to
deal with polynomials of degree 2. However, in the algorithm proposed in the following no polynomials
have to be constructed explicitly and the computational effort for doing least squares fits is eliminated as
well.

2. Properties of multivariate Bernstein polynomials

The Weierstraß Approximation Theorem states that continuous functions on compact intervals can
be arbitrarily well approximated by polynomials. One constructive way to obtain such polynomials are
Bernstein polynomials which were first introduced by Sergei N. Bernstein in the univariate case. A gen-
eralization to multidimensional intervals and its properties is presented in this section. Generalizations to
multidimensional simplices using barycentric coordinates and other properties of Bernstein polynomials
can be found e.g. in[1,3,7,13,15,17,18].

In order to keep the formulae simple only functions defined on the multidimensional intervals [0,1]N ,
i.e., the unit cubes inRN , are considered. Using affine transformations it is straightforward to apply the
formulae and results to arbitrary intervals.
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Definition 2.1 (Multivariate Bernstein polynomials). Letn1, . . . , nm ∈ N andf be a function ofm
variables. The polynomials

Bf,n1,... ,nm(x1, . . . , xm) :=
∑

0≤kj≤nj

j∈{1,... ,m}

f

(
k1

n1
, . . . ,

km

nm

) m∏
j=1

((
nj
kj

)
x
kj
j (1 − xj)

nj−kj

)

are called the multivariate Bernstein polynomials off .

We note thatBf,n1,... ,nm is a linear operator.

Lemma 2.2. For all x ∈ R

n∑
k=0

(k − nx)2

(
n

k

)
xk(1 − x)n−k = nx(1 − x).

For all x ∈ [0,1] we have x(1 − x) ≤ 1/4 and hence

0 ≤
n∑

k=0

(k − nx)2

(
n

k

)
xk(1 − x)n−k ≤ n

4
.

Theorem 2.3 (Uniform convergence).Let f : [0,1]m → R be a continuous function. Then the multi-
variate Bernstein polynomials Bf,n1,... ,nm converge uniformly to f for n1, . . . , nm → ∞.

Proof. We first note that because of the uniform continuity off on I := [0,1]m we have

∀ε > 0 : ∃δ > 0 : ∀x, x′ ∈ I : ‖x − x′‖ < δ ⇒ ‖f(x) − f(x′)‖ < 1
2ε.

Given anε > 0, we can find such aδ. In order to simplify notation we set

bj :=
(
nj
kj

)
x
kj
j (1 − xj)

nj−kj

and

k :=
(
k1

n1
, . . . ,

km

nm

)
.

x always lies inI. We have to estimate

Bf,n1,... ,nm(x) − f(x) =
∑

0≤kj≤nj

j∈{1,... ,m}

(f(k) − f(x))b1, . . . , bm

and to that end we split the sum into two parts, namely

S1 :=
′∑
(f(k) − f(x))b1, . . . , bm,
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where
∑′ means summation over allkj with 0 ≤ kj ≤ nj (wherej ∈ {1, . . . , m}) and‖k − x‖2 ≥ δ,

and

S2 :=
′′∑

(f(k) − f(x))b1, . . . , bm,

where
∑′′ means summation over the remaining terms. ForS2 we have

|S2| ≤
′′∑

|f(k) − f(x)|b1, . . . , bm <
ε

2

′′∑
b1, . . . , bm ≤ ε

2

∑
0≤kj≤nj

j∈{1,... ,m}

b1, . . . , bm = ε

2
.

We will now estimateS1. In the sumS1 the inequality‖k − x‖2 ≥ δ holds, i.e.,(
k1

n1
− x1

)2

+ · · · +
(
km

nm
− xm

)2

≥ δ2.

Hence at least one of the summands on the left hand side is greater equalδ2/m. Without loss of generality
we can assume this is the case for the first summand:

1 ≤ m

δ2

(k1 − n1x)
2

n2
1

.

Thus, usingLemma 2.2,

′∑
b1, . . . , bm ≤

′∑ m

δ2n2
1

(k1 − n1x)
2b1, . . . , bm ≤ m

δ2n2
1

∑
0≤kj≤nj

j∈{1,... ,m}

(k1 − n1x)
2b1, . . . , bm

= m

δ2n2
1

n1∑
k1=0

(k1 − n1x)
2

(
n1

k1

)
x
k1
1 (1 − x1)

n1−k1 ≤ m

δ2n2
1

n

4
= m

4δ2n1
.

We can now estimateS1. Sincef is continuous on a compact setM := maxx∈I |f(x)| exists.

|S1| ≤
′∑

|f(k) − f(x)|b1, . . . , bm ≤ 2M
′∑
b1, . . . , bm ≤ 2Mm

4δ2n1
= Mm

2δ2n1

Forn1 large enough we haveMm/2δ2n1 < ε/2 and thus

|Bf,n1,... ,nm(x) − f(x)| ≤ |S1| + |S2| < ε

2
+ ε

2
= ε,

which completes the proof. �

Corollary 2.4. The set of all polynomials is dense in C([0,1]m).

By presupposing more knowledge about the rate of change of the function, namely a Lipschitz condition,
an error bound is obtained.
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Theorem 2.5 (Error bound for Lipschitz condition).If f : I := [0,1]m → R is a continuous function
satisfying the Lipschitz condition

‖f(x) − f(y)‖2 < L‖x − y‖2

on I, then the inequality

‖Bf,n1,... ,nm(x) − f(x)‖2 <
L

2


 m∑

j=1

1

nj




1/2

holds.

Proof. Abbreviating notation we set

k :=
(
k1

n1
, . . . ,

km

nm

)
.

We will use the Lipschitz condition, the Cauchy–Schwarz inequality, andLemma 2.2.

‖Bf,n1,... ,nm(x) − f(x)‖2
2 ≤


 ∑

k1,... ,km

‖f(k) − f(x)‖2b1, . . . , bm




2

<
(
L
∑

‖k − x‖2b1, . . . , bm

)2

≤L2
(∑

‖k − x‖2
2b1, . . . , bm

) (∑
b1, . . . , bm

)
= L2

∑((
k1

n1
− x1

)2

+ · · · +
(
km

nm
− xm

)2
)
b1, . . . , bm = L2

m∑
j=1

xj(1 − xj)

nj
≤ L2

m∑
j=1

1

4nj

This completes the proof. �

Theorem 2.6 (Asymptotic formula).Let I := [0,1]m, let f : I → R be a C2 function, and let x ∈ I,
then

lim
n→∞ n(Bf,n,... ,n(x) − f(x)) =

m∑
j=1

xj(1 − xj)

2

∂2f(x)

∂x2
j

≤ 1

8

m∑
j=1

∂2f(x)

∂x2
j

.

Proof. We define the vectorh throughhj := kj/n− xj, where thekj are the integers over which we sum
in Bf,n,... ,n. Using Taylor’s theorem we see

f

(
k1

n
, . . . ,

km

n

)
= f(x) +

m∑
j=1

(
kj

n
− xj

)
∂f(x)

∂xj

+1

2

m∑
i=1

m∑
j=1

(
ki

n
− xi

)(
kj

n
− xj

)
∂2f(x0)

∂xi∂xj
+ ‖h‖2ρ(h),



224 C. Heitzinger et al. / Mathematics and Computers in Simulation 66 (2004) 219–230

where limh→0ρ(h) = 0. Summing this equation like the sum inBf,n,... ,n we obtain

Bf,n,... ,n = f(x) + 1

2

m∑
i=1

xj(1 − xj)

n

∂2f(x0)

∂x2
j

+
∑

k1,... ,km

‖h‖2ρ(h)b1, . . . , bm

since many terms vanish or can be summed because ofLemma 2.2. Noting limh→0ρ(h) = 0 we can
apply the same technique as in the proof ofTheorem 2.3for estimating the last sum in the last equation,
i.e., splitting the sum into two parts for‖h‖ ≥ δ and‖h‖ < δ. Hence we see that for allε this sum is less
equalε/n for all sufficiently largen, which yields the claim. �

This asymptotic formula gives information about the rate of convergence, and states that it depends only
on the partial derivatives∂2f(x)/∂x2

j . This is noteworthy, since it is often the case that the smoother a
function is and the more is known about its higher derivatives, the more properties can be proven, but in
this case only the second order derivatives play a role.

The following theorem states that the total variation of the Bernstein polynomial of a function of one
variable is less equal than the total variation of the function itself. Thus the Bernstein approximation
operator has a smoothing effect.

Theorem 2.7 (Total variation). Let V(f, [a, b]) be the total variation of f over [a, b] and let f : [0,1] →
R be a continuous function. Then

V(Bf,n, [0,1]) ≤ V(f, [0,1]),

where the equality sign holds if and only if the function f is monotone.

This means the approximation is smoother than the original function regarding the amount of total
variation. Proofs of this theorem can be found in[15,18], where the case of equality is discussed.

Not only is the total variation reduced by the Bernstein operator, but it also has the following variation
diminishing property.

Theorem 2.8 (Variation diminishing property).Let Z(f, (a, b)) be the number of real zeros of f in the
interval (a, b) and let f : [0,1] → R be a continuous function. Then

Z(Bf,n, (0,1)) ≤ v(f),

where v(f) is the number of changes of sign of f in [0,1].

This last theorem is the reason for the excellent smoothing properties of polynomials of Bernstein type. It
states that Bernstein polynomials should be used whenever a polynomial approximation is needed which
does not oscillate more often about any straight line than the function to be approximated[18].

Concerning the numerical aspect, an implementation for univariate Bernstein polynomials was pre-
sented in[21]. The higher the degree of the approximation polynomial, the more care has to be taken in
their numerical evaluation. In the cases needed for our applications, this is not an issue.
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3. The algorithm

The algorithm works by constructing approximating multivariate Bernstein polynomials in the neigh-
borhood of the points of the unstructured, new grid. LetA be the initial isotropic homogeneous grid,
where values are associated with the volume cells, as is usually the case in Monte Carlo simulations of
ion implantations, andB an arbitrary grid where values are associated with the grid points. This grid is to
be used in following simulations and hence it is determined by their demands. It is often an anisotropic
inhomogeneous one.

For each point of gridB, md neighboring points are used for constructing an approximation value for
the point considered (c.f.Fig. 1), wherem ≥ 3, m odd, andd is the dimension.m = 5 was chosen
in the example below and provides good smoothing results. At the boundary the values of gridA are
extended constantly. Thusmd points are used for constructing a multivariate Bernstein polynomial which
is evaluated at the point in the middle in question. Note that it is not necessary to calculate the polynomial
explicitly, since each polynomial is later evaluated at one point only. Additionally, it is not necessary to
use an affine transformation by assuming that the convex hull of the neighboring points is [0,1]d and the
middle point has coordinates(1/2, . . . ,1/2).

Thus for three dimensions and settingn := m − 1, the values of the points of gridB are

Bf,n,n,n(
1
2,

1
2,

1
2) = 1

8n

n∑
k1=0

n∑
k2=0

n∑
k3=0

fk1,k2,k3

(
n

k1

)(
n

k2

)(
n

k3

)
,

wherefk1,k2,k3 are the values of the corresponding cell of gridA andf0,0,0 has coordinates(0,0,0) and
fn,n,n has coordinates(1,1,1).

One of the benefits of this algorithm is that it can be implemented in a straightforward manner in
languages like C and Fortran using the expression forBf,n,n,n(

1
2,

1
2,

1
2) given above. In order to min-

imize computation time, the values of the binomial coefficients can be pre-calculated and stored in
arrays.

Fig. 1. This figure illustrates how the calculations for one point of the unstructured target gridBare performed in a two-dimensional
example. The thin orthogonal lines confine the cells of the initial gridA, the four sloped lines denote the unstructured grid, and the
point in the middle is the one currently considered. The 52 points show which values are used for determining the approximating
polynomial.
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Furthermore, it is fast so that it can be used for grids containing hundreds of thousands of points. Due to
the theorems given above, its smoothing and approximating properties are outstanding. Thus it is faster,
easier to implement, and approximates and smoothes better than the RSM approach of fitting polynomials
of fixed degree.

4. A three-dimensional example

The example is a three-dimensional CMOS structure which consists of poly-silicon in the upper part, of
silicon dioxide in the middle part, and silicon in the lower part. A boron dose of 1013 cm−2 with an energy
of 15 keV was implanted in a Monte Carlo simulation[10,11]using an isotropic homogeneous grid. The
resulting concentration of boron interstitial atoms in (cm−3) is shown inFigs. 2–6. The new anisotropic
inhomogeneous grid with 78,651 grid points was generated by DELINK[8] and is additionally shown in
Fig. 2. In Figs. 2, 3, 5 and 6the new algorithm was applied on 5× 5 grids, whereas inFig. 4least squares
fits of polynomials of degree 2 on grids of the same size were performed.

Obviously the result inFig. 4is inferior to the result yielded by the algorithm described in the previous
section. In order to interprete the failure of the RSM method, it is important to note that the shape of the
RSM polynomials of degree 2 does not allow enough change to adapt to the points to be approximated.
Because of the inherent noise in the Monte Carlo simulation result, the shapes of the RSM approximations
vary strongly between neighboring elements. Furthermore, because of the limited choice of approximating
polynomials, the noise may even be amplified.

The new algorithm provides very good smoothing and yields concentration values at the grid points
that can serve as input to subsequent simulation steps without problems. In this example the computation

Fig. 2. A front view of the sample Monte Carlo ion implantation after smoothing using the new algorithm. The unstructured
destination grid with 78,651 points is shown as well.
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Fig. 3. A front view of the sample Monte Carlo implantation after smoothing using the new algorithm.

Fig. 4. A front view of the sample Monte Carlo ion implantation after extracting values using least squares fits of multivariate
polynomials of degree 2.
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Fig. 5. A cut parallel to the front side of the sample Monte Carlo ion implantation after smoothing using the new algorithm.

Fig. 6. A back view of the sample Monte Carlo ion implantation after smoothing using the new algorithm.
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time on an Intel Pentium III processor at 1 GHz is 2.417 ms per point using the RSM method and 0.858 ms
per point using the new algorithm.

5. Conclusion

In summary, the properties of polynomials of fixed degree arising from least square fits were compared
to those of multivariate Bernstein polynomials. The Bernstein polynomials fulfill the requirements for
approximations needed for smoothing Monte Carlo simulation results and translating them from ion
implantation ortho-grids to arbitrary, unstructured grids.

The polynomials and the algorithm devised provide the following benefits. First, they converge uni-
formly when the number of base points goes to infinity. Second, an asymptotic formula gives information
about their rate of convergence. Third, total variation is decreased and the approximations do not oscillate
more often about any straight line than the original function. This assures suitable smoothing. Fourth,
the algorithm works very fast and is easy to implement using the specialized formula given, since the
calculation of the actual approximating polynomials is avoided.

Finally, the new algorithm and its RSM counterpart were compared in a real world Monte Carlo ion
implantation example, and the new algorithm was found to yield superior results, which can immediately
be used for further simulations.
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