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Abstract
The Wigner equation was used for the calculation of carrier transport in
mesoscopic devices. The carrier transport has a coherent part determined by
the Wigner potential Vw and a dissipative part accounting for the interaction
with phonons. Models have been developed which solve the equation by
using quasi-particles evolving over pieces of classical Newton trajectories.
In a backward evolution approach [1], the interaction with the Wigner
potential is interpreted as a scattering process. The quantum information is
carried by the particle weight. In the ensemble model proposed in [2], the
quantum information from Vw is included by the particle affinity. Both
weight and affinity are artificial numerical quantities. We propose a model
which interprets the Wigner equation with a Boltzmann scattering term as a
Boltzmann equation with a generation term. The quantum information is
carried by the sign of the quasi-particles. In all other aspects quasi-particles
behave as classical particles. The sign has a physical meaning since
particles of opposite sign can annihilate. The model ensures a seamless
transition between classical and quantum regions. Negative values of the
Wigner function are explained in a direct way.

1. Introduction

Models which explain quantum phenomena in classical terms
provide a convenient basis for the understanding and modelling
of charge transport in mesoscopic structures. A useful
formalism for the development of such models is provided
by the Wigner function approach, which combines a rigorous
quantum-kinetic picture with the classical concepts for phase
space and open system boundary conditions.

Without loss of generality we introduce the model for the
case of stationary transport in a one-dimensional device. The
real space coordinate x of the device is bounded between two
contact points 0 and L. The complete three-dimensional space
of wave vectors k = (kx, ky, kz) is considered.
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is defined by the Fourier transform:

Vw(x, kx) =
∫

ds e−ikxs
1

i2πh̄

(
V

(
x − s

2

)
− V

(
x +

s

2

))

(2)

where V (x) is the device potential. Open system boundary
conditions are provided by classical equilibrium functions
fb(xb, k), b = 1, 2 corresponding to the two reservoirs [3].

The characteristics of the Liouville operator are Newton
trajectories which have a simple form for the chosen
formulation (1): x(t) = x + h̄

m
kxt, k(t) = k. An alternative

formulation is obtained if the classical force term is separated
from Vw and assigned to the Liouville operator on the left-hand
side of (1) [4].

The Wigner function fw is used to obtain all statistical
averages of interest

〈A〉 =
∫

dx

∫
dkf (x, k)A(x, k) (3)

such as carrier density, velocity and current.
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2. Physical averages

A physical average 〈A〉 can be expressed in an alternative way
to (3):

〈A〉 =
∑
b=1,2

∫
K+(xb)

dkb

∫ ∞

0
dt0|vx(kb)|fb(xb, kb)

× exp

(
−

∫ t0

0
µ(xb(y), kb) dy

)
g(xb(t0), kb). (4)

This equation is obtained by a method described in [5] for the
case of a classical distribution function. K+(xb) is the part
of the wave vector space with inward directed x-velocities.
The function g is the solution of the adjoint integral equation
of (1):

g(x, k) =
∫ ∞

0
dt

∫
dk′�(x, k′, k)

× exp

(
−

∫ t

0
µ(x(y), k′) dy

)
θD(x)g(x(t), k′)

+ A(x, k) (5)

�(x, k′, k) = S(k, k′) + γ (x)δ(k′ − k)

+
(
V +

w(x, kx − k′
x) − V +

w(x, k′
x − kx)

)
δ(k′

yz − kyz) (6)

V +
w is a positive function defined as V +

w = max(Vw, 0). The
antisymmetry of Vw has been used in (6). The function
γ (x) = ∫

V +
w(x, kx) dkx is interpreted as the out-scattering

rate of the Wigner potential in strict analogy with the phonon
out-scattering rate λ [6]. Finally µ(x, k) = λ(k) + γ (x). The
indicator of the device domain θD(x) is unity if 0 � x � L and
zero otherwise. Using (4), physical averages can be directly
obtained from the boundary conditions and the solution of the
adjoint equation. The Neumann series of (5) replaced in (4)
gives rise to a series expansion of the physical average 〈A〉.
The expansion is analysed in terms of conditional probability
densities. According to the theory of the numerical Monte
Carlo method, conditional probability densities can be used to
construct numerical trajectories. These can be interpreted as
trajectories of quasi-particles which evolve in the phase space
as Boltzmann-like particles.

3. Quasi-particle model

The strict analogy of (4) with its classical counterpart [5]
allows a classical picture to be introduced where particles
are injected from the contacts with a velocity-weighted
equilibrium distribution. The state of an injected particle
provides the initial point for a numerical trajectory. The
transition probability for trajectory construction is given by
the kernel in (5), which we rewrite as

K(x, k′, k, t) = µ(x, k) exp

(
−

∫ t

0
µ(x(y), k′) dy

)

× �(x(t), k′, k)

µ(x, k)
θD(x(t)). (7)

The kernel describes a transition between an initial state (x, k)

and a final state (x(t), k′). It is multiplied and divided by µ to
obtain the probability density

pt(t, x, k) = µ(x(t), k) exp

(
−

∫ t

0
µ(x(y), k) dy

)
.

pt generates a value of t associated with the free flight
time of a particle which drifts over a piece of a Newton
trajectory between the initial state (x, k) at time 0 and the
final state (x(t), k). This state is used in the remaining term
�(x(t), k′, k)/µ(x(t), k) to select the value for k′,
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+ {δ(kx − k′
x)}

)
δ(kyz − k′
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where

p1(x, k) = λ(k)

µ(x, k)
1 − p1(x, k) = γ (x)

µ(x, k).
(8)

Normalized probability distributions are enclosed in curly
brackets. p1 is the probability for k′ to be selected from the
distribution S/λ. The case corresponds to a classical scattering
event, where the particle changes its wave vector from k to k′.

The alternative event occurring with probability 1 − p1

corresponds to interaction with the Wigner potential. In this
case, three normalized probability density functions have to
be considered: the delta function δ(kx − k′

x) describes self-
scattering, showing that the state (x(t), k) is not changed by
this interaction. In addition two new states (x(t), kx − q, kyz)

and (x(t), kx + q, kyz) are created, which are interpreted as
two particles. The momentum transfer q is generated from the
density V +

w(x(t), q)/γ (x(t)). At this point we associate with
each particle a sign. The first particle bears the sign of the
initial particle, the second one the opposite sign because of
the minus in front of the corresponding term in (6). The sign
of the particles is taken into account in the calculation of the
sample mean. Finally, the contribution of a particle becomes
zero only when the θD function in (7) becomes zero, which
happens when the particle leaves the device.

The following picture is associated with the transport
process. Quasi-particles are injected into the device from the
boundaries and are subject to drift and scattering events, caused
by the electron–phonon interaction. Particles have Boltzmann-
like behaviour independently of their sign. The interaction
with the Wigner potential occurs during the free flights, when
pairs of positive and negative particles are generated according
to the rules described. The picture corresponds to a Boltzmann
equation with a generation term.

The sign of the particles is taken into account in the
computation of the physical averages. A positive and a
negative particle which meet in a given phase space point have
a common probabilistic future. Such particles give opposite
contributions to any statistical average. Hence particles with
different signs annihilate when they meet in phase space.

The Wigner picture of quantum transport can be explained
by the processes of generation and annihilation of positive and
negative particles.

A useful property of the model is the seamless transition
between classical and quantum domains. Such domains are
determined by the values of the two out-scattering rates γ and
λ. If λ � γ , the scattering with phonons dominates and the
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transport is classical. In the opposite case, the interaction with
phonons is rarely selected. Such conditions correspond to
coherent transport when only pairs of particles are generated.

The model has been introduced for the case of stationary
transport determined by the boundary conditions. A
generalization to evolution problems determined by initial
conditions is straightforward.
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