Rigorous modeling approach to numerical simulation of SiGe HBTs

V. Palankovskia,*, G. Röhrerb, T. Grassera, S. Smirnova, H. Kosinaa, S. Selberherra

aInstitute for Microelectronics, TU Vienna, Gusshausstrasse 27-29, A-1040 Vienna, Austria
bAustriamicrosystems AG, Schloss Premstätten, A-8141 Unterpremstätten, Austria

Abstract

We present results of fully two-dimensional numerical simulations of silicon–germanium (SiGe) heterojunction bipolar transistors (HBTs) in comparison with experimental data. Among the critical modeling issues discussed in the paper, special attention is focused on the description of the anisotropic majority/minority electron mobility in strained SiGe grown in Si.

PACS: 85.30.Pq; 85.30.De

Keywords: SiGe; HBT; Numerical simulation; Modeling; Bandgap; Mobility

1. Introduction

Our SiGe HBT-CMOS integrated process is based on a 0.35 \textmu m mixed-signal CMOS process and includes an additional high-performance analog-oriented HBT module. The applications reach from circuits for mobile communication to high-speed networks. Using simulation in a predictive manner has been recognized as an integral part of any advanced technology development. In order to satisfy predictive capabilities the simulation tools must capture the process as well as the device physics.

2. Physical modeling

The two-dimensional device simulator MINIMOS-NT [1] can deal with various semiconductor materials and complex geometrical structures. Previous experience gained in the area of III–V HBT modeling and simulation which lead to successful results [2] was a prerequisite to use MINIMOS-NT also for simulation of SiGe HBTs.

2.1. Bandgap and bandgap narrowing

Modeling of strained SiGe is not a trivial task, since special attention has to be focused on the stress-dependent change of the bandgap due to Ge content [3]. This effect must be separated from the dopant-dependent bandgap narrowing which for itself depends on the semiconductor material composition, the doping concentration, and the lattice temperature [4].

2.2. Carrier mobility

As the minority carrier mobility is of considerable importance for bipolar transistors, an analytical low-field mobility model which distinguishes between...
majority and minority electron mobilities has been developed [3] using Monte Carlo simulation data for electrons in Si. A similar expression is currently implemented in MINIMOS-NT:

$$
\mu_{\text{maj}}^{\text{mid}} = \frac{\mu_{\text{maj}}^L - \mu_{\text{maj}}^\text{mid}}{1 + (N_D/C_{\text{maj}}^\text{mid})^2} + \frac{\mu_{\text{maj}}^L - \mu_{\text{hi}}^\text{maj}}{1 + (N_D/C_{\text{hi}}^\text{maj})^2} + \mu_{\text{hi}}^\text{maj} \quad (1)
$$

$$
\mu_{\text{min}}^{\text{mid}} = \frac{\mu_{\text{min}}^L - \mu_{\text{min}}^\text{mid}}{1 + (N_A/C_{\text{min}}^\text{mid})^2} + \frac{\mu_{\text{min}}^L - \mu_{\text{hi}}^\text{min}}{1 + (N_A/C_{\text{hi}}^\text{min})^2} + \mu_{\text{hi}}^\text{min} \quad (2)
$$

$$
\mu_{n}^{\text{L}} = \left(\frac{1}{\mu_{\text{maj}}^{\text{L}}} + \frac{1}{\mu_{\text{min}}^{\text{L}}} - \frac{1}{\mu_{n}^{\text{L}}} \right)^{-1} \quad (3)
$$

where μ^L is the mobility for undoped material, μ_{hi} the mobility at the highest doping concentration. $\mu_{\text{maj}}^{\text{mid}}, \mu_{\text{min}}^{\text{mid}}, C_{\text{maj}}^\text{mid}, C_{\text{min}}^\text{mid}, z, \text{ and } \beta$ are used as fitting parameters. The final low-field electron mobility μ_{n}^{L}, which accounts for a combination of both acceptor and donor doping is given by (3). Fig. 1 demonstrates a good match between the analytical model, our Monte Carlo simulation data, and measurements [5–8] at 300 K for Si.

Monte Carlo simulation which accounts for alloy scattering and the splitting of the anisotropic conduction band valleys due to strain [9] in combination with an accurate ionized impurity scattering model [10], allowed us to obtain results for SiGe for the complete range of donor and acceptor concentrations and Ge contents x. We use the same functional form to fit the doping dependence of the in-plane mobility component for $x = 0$ and $x = 1$ (Si and strained Ge on Si). The material composition dependence is modeled by

$$
\frac{1}{\mu(x)} = \frac{1 - x}{\mu_{\text{Si}}} + \frac{x}{\mu_{\text{Ge}}} + \frac{(1 - x)x}{C_{\mu}} \quad (4)
$$

C_{μ} is a bowing parameter which is equal to 140 and 110 cm2/V s for doping levels below and above C_{mid}, respectively. Fig. 2 shows the in-plane minority electron mobility in Si$_{1-x}$Ge$_x$ as a function of x at 300 K for different acceptor doping concentrations. The model parameters used for SiGe at 300 K are summarized in Table 1.

![Minority electron mobility in Si$_{1-x}$Ge$_x$ as a function of x for in-plane direction: the model gives good agreement with Monte Carlo simulation data.](image)

Fig. 2. Minority electron mobility in Si$_{1-x}$Ge$_x$ as a function of x for in-plane direction: the model gives good agreement with Monte Carlo simulation data.

Table 1

Parameter values for the majority/minority electron mobility at 300 K

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Si</th>
<th>Ge (on Si)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{maj}^L</td>
<td>1430</td>
<td>560</td>
<td>cm2/V s</td>
</tr>
<tr>
<td>μ_{mid}^L</td>
<td>44</td>
<td>80</td>
<td>cm2/V s</td>
</tr>
<tr>
<td>μ_{hi}^L</td>
<td>58</td>
<td>59</td>
<td>cm2/V s</td>
</tr>
<tr>
<td>$\mu_{\text{maj}}^\text{mid}$</td>
<td>141</td>
<td>124</td>
<td>cm2/V s</td>
</tr>
<tr>
<td>$\mu_{\text{mid}}^\text{mid}$</td>
<td>218</td>
<td>158</td>
<td>cm2/V s</td>
</tr>
<tr>
<td>$\mu_{\text{hi}}^\text{mid}$</td>
<td>3.37e17</td>
<td>5.4e17</td>
<td>cm$^{-3}$</td>
</tr>
<tr>
<td>z</td>
<td>6.5</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>C_{μ}</td>
<td>1.12e17</td>
<td>4.0e17</td>
<td>cm$^{-3}$</td>
</tr>
<tr>
<td>C_{maj}</td>
<td>1.18e20</td>
<td>4.9e17</td>
<td>cm$^{-3}$</td>
</tr>
<tr>
<td>C_{mid}</td>
<td>4.35e19</td>
<td>5.4e19</td>
<td>cm$^{-3}$</td>
</tr>
</tbody>
</table>

![Majority and minority mobility in Si at 300 K: comparison between Monte Carlo simulation data and experimental data.](image)

Fig. 1. Majority and minority mobility in Si at 300 K: comparison between Monte Carlo simulation data and experimental data.
The component of the mobility perpendicular to the surface is then obtained by a multiplication factor given by the ratio of the two mobility components. The good agreement of the model with the measured and Monte Carlo simulation data, both for in-plane and perpendicular to the surface directions, is illustrated in Fig. 3.

3. Simulated device structure

The double-base SiGe HBT structures are CVD-grown with emitter areas of 12 μm × 0.4 μm. The base–emitter junction is formed by rapid thermal processing which causes out-diffusion of arsenic from the poly-silicon emitter layer into the crystalline silicon. The process simulation with DIOS [11] reflects real device fabrication as accurately as possible. The implant profiles as well as the annealing steps are calibrated to one-dimensional SIMS profiles. To save computational resources the simulation domain covers only one half of the real device which is symmetric and the collector-sinker and the base poly-silicon contact layer are not included in the structure.

All important physical effects, such as surface recombination, impact ionization generation, and self-heating, are properly modeled and accounted for in the simulation in order to get good agreement with measured forward (Fig. 4) and output characteristics (Fig. 5) using a concise set of models and parameters. In contrast, simulation without including self-heating effects cannot reproduce the experimental data, especially at high power levels.

The only fitting parameters used in the simulation are the contribution of doping-dependent bandgap narrowing to the conduction band (here about 80 and 20% for donor and acceptor doping, respectively), the concentration of traps in the Shockley–Read–Hall recombination model (here 10^{14} cm^{-3}), the velocity
recombination for holes (here 8200 cm/s) in the polysilicon contact model [12] used at the emitter contact, and the substrate thermal resistance.

A closer look at the increasing collector current \(I_C \) at high collector-to-emitter voltages \(V_{CE} \) and constant base current \(I_B \) stepped by 0.4 \(\mu \)A from 0.1 to 1.7 \(\mu \)A reveals the interplay between SH effect and II generation.

In fact, both \(I_C \) and \(I_B \) increase due to self-heating at a given bias condition. As the change is relatively higher for \(I_B \), in order to maintain it at the same level, \(V_{BE} \) and, therefore, \(I_C \) decrease.

\section*{4. Conclusion}

Critical issues for numerical modeling of SiGe devices have been discussed including accurate models for bandgap narrowing and minority/majority electron mobility in strained SiGe. Good agreement was obtained between simulation and experimental DC results (forward and output characteristics) of SiGe HBTs. The newly established models are beneficial for future process development.

\textbf{Acknowledgements}

The authors acknowledge the support from the Austrian Science Fund (FWF), Project P14483-MAT, and the “Christian Doppler Forschungsgesellschaft”, Vienna, Austria.

\textbf{References}

