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Abstract

Under strain the electronic properties of Si and SiGe significantly change. For the semiconductor industry the

improvement of the kinetic properties is most interesting. In this work we present Monte Carlo modeling of the low field

electron mobility in strained Si1�xGex layers grown on relaxed Si1�yGey substrates of arbitrary orientation. An analytical

conduction band model is used. The valley splitting is calculated using linear deformation-potential theory. The depen-

dence on the substrate orientation is taken into consideration by transforming the strain tensor. Hooke’s law is then used

to determine the elements of the strain tensor in the principle coordinate system. The phonon and ionized impurity

scattering rates are modified to account for the change of the conduction band. A zero field Monte Carlo method used to

calculate the low field mobility tensor in the strained material is described and the influence of the Pauli exclusion principle

is discussed. Simulation results are given for both undoped and doped layers for different compositions x and y as well as
for several substrate orientations. The anisotropic behavior of the mobility as a function of the in-plane angle is dem-

onstrated and the interplay between the strain effects and effects due to Fermi–Dirac statistics is shown.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

With each new technology generation geometric

scaling has become an increasingly complex and

expensive task. An additional way to improve device

performance is to enhance the carrier transport by

changing the material properties. In advanced semi-

conductor devices strain can be used as an additional

degree of freedom to enhance transport properties due

to band structure changes. A dominant change is the

degeneracy reduction of the conduction band extrema

which are degenerate in a relaxed material because of the

symmetry of the crystal. Physical modeling is necessary
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because the kinetic processes in semiconductors have a

complex behavior which cannot be described analyti-

cally. Furthermore strain affects the kinetic properties of

the material in a rather complicated manner.

One possible way of describing the kinetic properties

of a material is given by the semiclassical Boltzmann

kinetic equation. This is an integral–differential equation

which becomes nonlinear if the quantum mechanical

Pauli exclusion principle is taken into account. There are

various analytical and numerical approaches for the

solution of this equation. However, only the Monte

Carlo approach allows comprehensive physical models

to be included without further approximations. Espe-

cially strain effects can be included naturally in the for-

malism provided by the Boltzmann equation. Both

analytical and full band structures can be taken into

account by the Monte Carlo approach. The full band

analysis of strained Si and SiGe grown on relaxed [0 0 1]
ed.
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Fig. 1. Full reduction of degeneracy due to the applied stress

for a hypothetical band structure. For a general orientation of

applied forces e1 6¼ e2 6¼ e3 6¼ e4.

ε(k)

ε0

ε1

ε2,ε3

applied forces

unstrained

ε(k)

ky ky

1326 S. Smirnov, H. Kosina / Solid-State Electronics 48 (2004) 1325–1335
substrates has been performed in [1]. However, strained

layers grown on substrates with other orientations and

the influence of ionized impurity scattering have not

been considered. In [2] the Ridley model has been em-

ployed for strained doped layers but, the effect of the

Pauli exclusion principle has been neglected.

In this work we investigate the low field electron

mobility. Thus an analytical model for the band struc-

ture including an anisotropic effective mass and a non-

parabolicity correction [3] is used here:

�ðkÞð1þ a�ðkÞÞ ¼ �h
2

k2x
mx

 
þ

k2y
my

þ k2z
mz

!
: ð1Þ

The influence of strain on the kinetics is studied using a

zero field Monte Carlo method. For the electron gas in

doped layers degenerate statistics is considered and the

scattering operator accounts for the Pauli principle.

The paper is organized as follows. In Section 2 the

splitting of the conduction band in strained SiGe is de-

scribed for the X and L valleys. A general substrate

orientation is taken into account. In Section 3 the scat-

tering rates of the dominant processes are modified to

account for the change of the conduction band. In

Section 4 the zero field Monte Carlo method used is

presented. Simulation results are discussed in Section 5

and some concluding remarks are drawn in Section 6.
kx
ε4

strained

kx

Fig. 2. Partial reduction of degeneracy due to the applied stress

for a hypothetical band structure. Applied forces are oriented

along a high symmetry axes: e1 6¼ e2 ¼ e3 6¼ e4.
2. Conduction band in strained SiGe

Linear deformation-potential theory is used to cal-

culate the splitting of the conduction band minima in

strained SiGe. This theory has been first justified within

the effective mass approximation by Bardeen and

Shockley [4] and is thus commonly referred to as the

Bardeen–Shockley theory. Originally this theory has

been applied to study the electron interaction with

acoustic phonons and later to formulate the theory of

strained materials. Within this theory an energy extre-

mum is expanded into a Taylor series in powers of a

quantity characterizing the strength of the lattice strain.

The expansion is truncated after the first power of this

parameter, resulting in a linear the theory. Neglecting

terms of the second order is equivalent to the effective

masses being unchanged by the induced strain.

As Si and Ge have their conduction band extrema at

quasi-momenta k 6¼ 0, the applied stress reduces the

original degeneracy of band states with different quasi-

momenta. This reduction depends on the relative ori-

entation of the quasi-momentum for a given conduction

band extremum and the applied forces, as schematically

illustrated in Figs. 1 and 2. For a general orientation of

applied forces all band extrema can be split. However if

forces are applied along some high symmetry axes the

degeneracy reduction can be partial. Extrema are
forming subsets within which the degeneracy is con-

served, but extrema from different subsets are no longer

degenerate.

In Si1�xGex layers grown on relaxed Si1�yGey sub-

strates stress due to lattice mismatch always arises when

the Ge compositions are different, x 6¼ y. The direction

and the magnitude of the applied forces in such a system

depend on the orientation of the Si1�yGey substrate and

the Ge compositions x and y. This stress leads to a

deformation of the perfect crystal. It is assumed that the

thickness is below the critical value which implies ab-

sence of dislocations. As a result the degeneracy of the

conduction band is reduced. The splitting of the con-

duction band minima has a strong impact on the

transport properties of strained SiGe active layers in

comparison with unstrained ones. In particular it causes

anisotropy of transport quantities such as electron

mobility. For Si, Ge and SiGe the low field electron

mobility is represented by a scalar, that is, the mobility

tensor is diagonal with equal diagonal elements. In the

strained layer the diagonal elements are in general dif-
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ferent. The difference of the kinetic properties for dif-

ferent orientations can be significant and can be used to

optimize the characteristics of advanced semiconductor

devices.

2.1. Energy shift

As it has been pointed out above in a strained solid

the energy of an extremum is expanded into the Taylor

series in powers of some small quantity characterizing

the strength of the lattice strain. For weak strain it is

natural to perform the expansion in powers of the strain

tensor components around the unstrained point. The

energy shift of the kth nondegenerate band extremum is

in general expressed as:

D�ðkÞ ¼
X
ij

NðkÞ
ij eij: ð2Þ

The coefficients of this expansion form a second rank

tensor called the deformation potential tensor. This

tensor is a characteristic of a given nondegenerate band

of a solid. Due to the symmetry property of the strain

tensor the deformation potential tensor is also sym-

metric:

NðkÞ
ij ¼ NðkÞ

ji : ð3Þ

Such tensor has only six independent components. For

cubic crystals the number of independent components

reduces to three, denoted as Nu, Nd and Np.

2.1.1. Shift of conduction band minima

In this work the X and L valleys of Si, Ge, and SiGe

are considered. The symmetry of these valleys further

reduces the number of independent components of the

deformation potential tensor to two, namely Nu and Nd.

The deformation potential Nd relates to pure dilatation

while Nu is associated with a pure shear involving a

uniaxial stretch along the major axis plus a symmetrical

compression along the minor axis [5].

Linear deformation-potential theory implies that for

conduction band extrema not located in the center of

the Brillouin zone the shape of the equal energy surface

does not change to the first order in strain. However, a

particular extremum of the conduction band shifts

under strain. The shift depends on the magnitude of

applied forces and their orientation with respect to the

quasi-momentum of a given extremum. The degener-

ate extrema are in general split. This splitting is com-

pletely determined by the deformation potentials Nd

and Nu.

The general form of the energy shift (2) of valley i of
type k ¼ X ; L for an arbitrary homogeneous deforma-

tion can be written in the following form [6]:

D�ði;kÞc ¼ NðkÞ
d TrðêÞ þ NðkÞ

u aTi êai; ð4Þ
where ai is a unit vector parallel to the k vector of valley

i. From (4) it follows that degeneracy is reduced by shear

strain.

2.1.2. Shift of the mean energy

The shift of the mean energy of the conduction band

extrema of type k is expressed as:

D�ðkÞc;av ¼ Nk
d

�
þ 1

3
Nk

u

�
Trð̂eÞ: ð5Þ

This shift can become important when more than one

type of valley is taken into account as in general the

deformation potentials Nd and Nu have different values

for different valley types. The relative shift of the mean

energy for valleys of different type can cause a repopu-

lation between these valleys as schematically shown in

Fig. 3 for the case of X and L valleys. Expression (5) is

derived as an average of particular shifts given by (4).

Thus some valleys of a given type can still significantly

move which will cause a repopulation between particular

extrema of different type while the transitions between

other extrema will be reduced.

2.2. Strain tensor in the interface coordinate system

The energy splitting and the hydrostatic shift of the

mean energy depend on the orientation of the applied

forces. In the case of strained SiGe active layers grown

on relaxed SiGe substrates this orientation is determined

by the orientation of a substrate.

The interface coordinate system is specified as a

system with its z-axis perpendicular to the hetero-inter-

face. The form of the strain tensor ê0 in this coordinate

system can be found as follows.

The condition of biaxial dilatation or contraction

gives:

e011 ¼ e022 ¼ ek; ð6Þ

where ek is the in-plane strain given as the relative lattice

mismatch:
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ek ¼
as � al

al
: ð7Þ

Here al is the lattice constant of the layer and as that of
the substrate. The substrate is assumed to be thick en-

ough to remain unstrained. Further, the condition of

vanishing in-plane shear implies:

e012 ¼ 0: ð8Þ

It is also assumed that there is no any film distortion

which means the following conditions:

e013 ¼ e023 ¼ 0: ð9Þ
bU ða; b; cÞ ¼
cos a cos b cos c� sin a sin c � cos a cosb sin c� sin a cos c cos a sinb
sin a cosb cos cþ cos a sin c � sin a cos b sin cþ cos a cos c sin a sinb

� sin b cos c sinb sin c cos b

0@ 1A: ð14Þ
This is justified for the case of substrates with high

rotational symmetry. In other cases it is relatively weak

for SiGe structures.

Thus under these conditions the strain tensor for the

SiGe active layer is diagonal in the interface coordinate

system. The two diagonal elements are known to be

equal to ek. To determine the third diagonal element

Hooke’s law is applied. It linearly relates the compo-

nents of the stress and the strain tensors rik and ejl:

r0
ab ¼ c0abije

0
ij; ð10Þ

where cijkl is a tensor of rank four called the elastic

stiffness tensor. As the only external stress is in-plane,

the out-of-plane component will vanish

r0
33 ¼ 0; ð11Þ

which gives for the third diagonal component of the

strain tensor:

e033 ¼ � c03311 þ c03322
c03333

ek: ð12Þ
2.3. Coordinate system transformation

To find the components of the elastic stiffness tensor

it is necessary to perform a coordinate transformation.

2.3.1. Euler’s angles

The angles which specify the relative orientation of

the two coordinate systems are called Euler’s angles.

They are defined by the following rules. First a clockwise

rotation around the z-axis is performed. This angle is

usually denoted as a. Then a clockwise rotation around

the new y-axis follows. This second angle is denoted as

b. Finally, a clockwise rotation around the new z-axis
finishes the transformation. The last angle is denoted as

c. The range of these angles are determined as follows:

06 a6 2p;

06 b6p;

06 c6 2p:

ð13Þ
2.3.2. Transformation operator

The transformation operator describing three suc-

cessive rotations with the Euler angles a, b and c is given
as a product of three rotations and takes the following

form:
Due to the symmetry property (6) the transformed strain

tensor will not depend on c. So c is arbitrary and can be

set to zero. The transformation operator takes the final

form:

bU ða; bÞ ¼
cos a cos b � sin a cos a sin b
sin a cos b cos a sin a sin b
� sinb 0 cosb

0@ 1A: ð15Þ
2.3.3. Tensor transformations

Using the transformation operator bU ða; bÞ the strain
tensor elements are transformed as follows:

e0ab ¼ UiaUjbeij: ð16Þ

Therefore the main task is to determine the elements of

the strain tensor in the interface coordinate system. The

strain tensor elements in the principle coordinate system

are then obtained as:

eab ¼ UaiUbje
0
ij: ð17Þ

The elastic stiffness tensor is transformed analogously:

c0abdc ¼ UiaUjbUkdUlccijkl: ð18Þ
2.4. Strain tensor elements in the principle coordinate

system

Due to the cubic symmetry of Si and Ge there are

only three nonzero components of the elastic stiffness

tensor namely c11, c12 and c44 in the short-hand notation

[7]. This fact allows to significantly simplify the calcu-

lations of e033 which are given below for the three sub-

strate orientations [0 0 1], [1 1 0] and [1 1 1]. The

calculations for an arbitrary substrate orientation are

performed in the same manner. For these three substrate

orientations the transformation operator takes the form:
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bUð0 0 1Þ ¼
1 0 0

0 1 0

0 0 1

0@ 1A; ð19Þ

bUð1 1 0Þ ¼
0 � 1ffiffi

2
p 1ffiffi

2
p

0 1ffiffi
2

p 1ffiffi
2

p

�1 0 0

0B@
1CA; ð20Þ

bUð1 1 1Þ ¼

1ffiffi
6

p � 1ffiffi
2

p 1ffiffi
3

p

1ffiffi
6

p 1ffiffi
2

p 1ffiffi
3

pffiffi
2
3

q
0 1ffiffi

3
p

0BB@
1CCA: ð21Þ

Using (18) and (12) one obtains:

e0ð0 0 1Þ33 ¼ � 2c12
c11

ek; ð22Þ

e0ð1 1 0Þ33 ¼ � c11 þ 3c12 � 2c44
c11 þ c12 þ 2c44

ek; ð23Þ
e0ð1 1 1Þ33 ¼ � 2c11 þ 4c12 � 4c44
c11 þ 2c12 þ 4c44

ek: ð24Þ

Now the transformation of the strain tensor according

to (17) gives for the elements of the strain tensor in the

principle coordinate system the following expressions.

[0 0 1]:

eð0 0 1Þ11 ¼ eð0 0 1Þ22 ¼ ek;

eð0 0 1Þ33 ¼ � 2c12
c11

ek;

eð0 0 1Þ12 ¼ eð0 0 1Þ13 ¼ e0 0 123 ¼ 0:

ð25Þ

[1 1 0]:

eð1 1 0Þ11 ¼ eð1 1 0Þ22 ¼ 2c44 � c12
c11 þ c12 þ 2c44

ek;

eð1 1 0Þ33 ¼ ek;

eð1 1 0Þ12 ¼ � c11 þ 2c12
c11 þ c12 þ 2c44

ek;

eð1 1 0Þ13 ¼ eð1 1 0Þ23 ¼ 0:

ð26Þ

[1 1 1]:

eð1 1 1Þ11 ¼ eð1 1 1Þ22 ¼ eð1 1 1Þ33 ¼ 4c44
c11 þ 2c12 þ 4c44

ek;

eð1 1 1Þ12 ¼ eð1 1 1Þ13 ¼ eð1 1 1Þ23 ¼ � c11 þ 2c12
c11 þ 2c12 þ 4c44

ek:
ð27Þ
2.5. Band structure of strained SiGe layers

Within linear deformation-potential theory only shift

of valleys is taken into account whereas their shape is

unchanged. This shift is described by general expressions
(4) and (5). These expressions are used to calculate the

energy splitting and the shift of the mean energy of the X
and L valleys for the three most important substrate

orientations. Generalization for the case of an arbitrary

substrate orientation is straightforward.

2.5.1. Hydrostatic strain

Expression (5) gives the hydrostatic shift of the mean

energy of both X and L valleys:

D�X ;Lc;av ¼ NX ;L
d

�
þ 1

3
NX ;L

u

�
ðe11 þ e22 þ e33Þ: ð28Þ

Note that the deformation potentials for X and L valleys

are different.

2.5.2. Uniaxial strain

The splitting of equivalent valleys is given by the

difference of (4) and (5) and depend on both valley type

and substrate orientation.

Splitting of the X Valleys. For [0 0 1] and [1 1 0] sub-

strates the splitting is given as:

D�ð1 0 0Þ ¼ D�ð0 1 0Þ ¼ 1

3
NX

u ðe11 � e33Þ;

D�ð0 0 1Þ ¼ 2

3
NX

u ðe33 � e11Þ:
ð29Þ

For [1 1 1] substrate it becomes:

D�ð1 0 0Þ ¼ D�ð0 1 0Þ ¼ D�ð0 0 1Þ ¼ 0: ð30Þ

Expression (30) means that for [1 1 1] substrates the X
valleys remain degenerate.

Splitting of the L Valleys. For [0 0 1] substrate the

splitting becomes:

D�ð1 1 1Þ ¼ D�ð
�111Þ ¼ D�ð

�1�11Þ ¼ D�ð1
�1 1Þ ¼ 0: ð31Þ

For [1 1 0]:

D�ð1 1 1Þ ¼ D�ð
�1 �1 1Þ ¼ 2

3
NL

ue12;

D�ð
�111Þ ¼ D�ð1

�1 1Þ ¼ � 2

3
NL

ue12:
ð32Þ

For [1 1 1]:

D�ð1 1 1Þ ¼ 2NL
ue12;

D�ð
�111Þ ¼ D�ð

�1�11Þ ¼ D�ð1
�1 1Þ ¼ � 2

3
NL

ue12:
ð33Þ

Expression (31) shows that the L valleys are degenerate

for the substrate orientation [0 0 1]. For [1 1 0] and [1 1 1]

substrates they are split. This splitting is symmetric with

respect to the mean energy for the substrate oriented

along [1 1 0] while it is asymmetric for the case of the

substrate oriented along [1 1 1].
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2.6. Effective masses in strained SiGe

To take into account effects beyond the linear

deformation-potential theory the model of Rieger and

Vogl [8] is used for the substrate orientation [0 0 1]. This

model gives the effective masses versus Ge mole fractions

in the active layer and the substrate:

m�ðx; yÞ ¼ 1; ðx� yÞ; ðx� yÞ2
� �

W
1

ðxþ yÞ

� �
ð34Þ

where W contains parameterized transverse and longi-

tudinal effective masses for the perpendicular and par-

allel X valleys, and x and y denote the Ge mole fractions

of the active layer and the substrate, respectively.

For substrate orientations different from [0 0 1] a

linear interpolation

m�
SiGe ¼ m�

Sið1� xÞ þ m�
Gex: ð35Þ

is used for the effective masses in the active layer.
3. Scattering mechanisms in strained SiGe

The changes in the band structure of strained SiGe

affects the scattering processes in the active layer. These

modification are discussed in the following for the main

scattering processes in SiGe such as the electron–phonon

and the ionized impurity scattering.

3.1. Electron–phonon scattering

The influence of strain on acoustic phonon scattering

is taken into account through the modification of the

number of final equivalent valleys and the final electron

energy.

The final energy is given by the following expression:

Efin ¼ Ein � �hxV1V2 þ DEðV1 ;V2Þ
ij ;

DEðV1 ;V2Þ
ij ¼ DEðV1Þ

j � DEðV2Þ
i ;

ð36Þ

where DEðV1 ;V2Þ
ij is the difference between the minima of

the valleys V1 and V2, Vk ¼ X ; L is the valley type and

indices i and j denote the initial and final orientations of

the valleys, respectively.

3.2. Ionized impurity scattering

The influence of strain on the Fermi level and the

screening parameters of the ionized impurity scattering

model [9] is considered. The effects of strain on impurity

centers [10] in doped layers, however, are neglected.

For an analytical band structure taking into account

nonparabolicity and anisotropy the density of states of

one valley is given by
gð�Þ ¼
ffiffiffi
2

p
m

3
2

d

ffiffi
�

p

p2�h3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a�

p
� ð1þ 2a�Þ ð37Þ

In order to calculate the Fermi energy in the strained

material only terms up to the second order in the non-

parabolicity coefficient are kept. A nonlinear equation

for the Fermi energy Ef is obtained:

n ¼
X
i

N ðorÞ
ci

X
j

F1=2ðgijÞ
�

þ 15

4
akBT0F3=2ðgijÞ

þ 105

32
a2k2BT

2
0F5=2ðgijÞ

�
ð38Þ

where gij ¼ ðEf � Eci � DEcijÞ=kBT0, N ðorÞ
ci

stands for the

effective density of states of valley i with orientation j,
DEcij is the energy splitting of that valley and T0 is the

lattice temperature. The linear and quadratic terms in

(38) play an important role as carriers can populate

higher energy levels in highly degenerate semiconduc-

tors. (38) is solved by Newton iteration using as an

initial guess the solution obtained for nondegenerate

statistics and parabolic bands.

Including nonparabolicity up to the second order the

contribution of valley i with orientation j to the inverse

screening length takes the following form:

b2
sij
¼ e2

ese0kBT0
N ðorÞ

ci
� F�1=2ðgijÞ
�

þ 15

4
akBT0 �F1=2ðgijÞ

þ 105

32
a2k2BT

2
0 �F3=2ðgijÞ

�
; ð39Þ

It should be noted that in semiconductors with non-

parabolic bands the inverse screening length increases

which may weaken the ionized impurity scattering rate

in particular for a high doping level when due to the

Pauli exclusion principle the population of higher ener-

gies increases significantly. Thus there are two opposite

factors which determine the strength of ionized impurity

scattering. Another interesting effect occurs in strained

doped materials. Due to strain some valleys shift up and

do not contribute to the kinetics. However, this may

change at high degeneracy when the Pauli principle

causes the upper split bands to be populated, which then

also give a contribution to the transport properties. The

repopulation may be significant leading to a reduction of

the valley splitting effect.

In case of momentum-dependent screening the

dielectric function is modified to take into account the

strain induced splitting of the conduction band minima

for different valleys and orientations:

eðqÞ ¼ eð0Þ � 1

 
þ 1

q2
X
ij

b2
sij
Gijðn; gijÞ

!
; ð40Þ

where Gij stands for the screening function in valley i
with orientation j. The momentum transfer q ¼ k0 � k

and the temperature dependence enters through n:
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n2 ¼ �h2q2

8m�kBTL
: ð41Þ
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Fig. 4. Schematic illustration of the scattering processes at high

degeneracy.
4. Zero field Monte Carlo method

In this work we use a Monte Carlo algorithm for zero

electric field and degenerate statistics [11,12]. The Pauli

exclusion principle is taken into consideration in the

scattering term of the Boltzmann equation. As a result

the Boltzmann equation becomes nonlinear.

As a starting point we use the transient Boltzmann

transport equation with a scattering operator including

the Pauli blocking factor. As we only consider bulk

semiconductors, the space dependence of the distribu-

tion function and the differential scattering rates is ne-

glected. We also suppose the scattering rate to be time

invariant.

After linearization and transformation of the Boltz-

mann equation to integral form [14] and assuming an

impulse-like excitation for the electric field, we derive the

following equation for the perturbation f1ðk; tÞ of the

distribution function:

f1ðk; tÞ ¼
Z t

0

dt0
Z

dk0f1ðk0; t0Þ � eS k0;Kðt0Þ
� 	

� exp
�
�
Z t

t0

~kðKðyÞÞdy
�

þ GðKð0ÞÞ � exp
�
�
Z t

0

~kðKðyÞÞdy
�
: ð42Þ

The differential scattering rate eSðk0; kÞ and the total

scattering rate ~kðkÞ are defined by the following

expressions:eSðk0; kÞ ¼ ½1� fsðkÞ� � Sðk0; kÞ þ fsðkÞ � Sðk; k0Þ

~kðkÞ ¼
Z eSðk; k0Þdk0;

ð43Þ

where fsðkÞ is the stationary distribution function,

Sðk0; kÞdk0 is the scattering rate from dk0 to a state with

wave vector k, which must not be occupied. Employing

the d-function of the Fermi golden rule the expression

for ~kðkÞ can be rewritten in the following manner:

~kðkÞ ¼ ½1� fsð�fÞ� � kðkÞ þ fsð�fÞ � k�ðkÞ; ð44Þ

where �f is the final energy, kðkÞ ¼
R
Sðk; k0Þdk0 is the

total scattering rate, k�ðkÞ ¼
R
Sðk0; kÞdk0 is the total

backward scattering rate. The new variables eSðk0; kÞ and
~kðkÞ introduced above are used to construct the Monte

Carlo algorithm. It should be also noted that for non-

degenerate statistics ðfs � 1Þ this algorithm gives the

method described previously [13]. For intermediate

doping levels (44) describes a linear combination of the

total scattering rate kðkÞ and the backward scattering
rate k�ðkÞ, while for the degenerate case ðfs K 1Þ the

kinetic properties are predominantly determined by the

backward scattering rate k�ðkÞ.
Since at high doping levels the backward scattering

rate is dominant, the probability to scatter to higher

energy states is larger than to lower energy states, as

schematically shown in Fig. 4(a). This means that lower

energy levels are already occupied by particles (see Fig.

4(b)) and, due to the Pauli exclusion principle, scattering

to these energy levels is quantum mechanically forbid-

den.

The mobility component lij is computed by the fol-

lowing algorithm:

1. Set n ¼ 0, w ¼ 0.

2. Select initial state k arbitrarily.

3. Compute a sum of weights:

w ¼ wþ ½1� fFDð�Þ�½vjðkÞ=~kðkÞ�:

4. Select a free-flight time ~tf ¼ � lnðrÞ=~kðkÞ and add

time integral to estimator: n ¼ nþ wvi~tf or use the ex-
pected value of the time integral: n ¼ nþ wvi=~kðkÞ.

5. Perform scattering. If the scattering mechanism was

isotropic, reset weight: w ¼ 0.

6. Continue with step 3 until N k-points have been gene-

rated.

7. Calculate component of zero field mobility tensor as

lij ¼ qh~kin=ðkBT0NÞ.
5. Simulation results

Results of Monte Carlo simulations of strained SiGe

layers are presented. First the low field electron mobility

is investigated as a function of the Ge compositions of

both the active layer and the substrate for the undoped

case. Then strained doped layers are studied. Finally, the

influence of the substrate orientation is demonstrated.

All results are presented for room temperature.

Fig. 5 shows l?, the electron mobility perpendicular

to the interface for several substrate orientations, while

Fig. 6 demonstrates lk, the electron mobility parallel to

the interface for the same substrate orientations. Figs. 7

and 8 show the population of the X and L valleys for
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different orientations. As it is seen from Fig. 7, the X
valleys with orientations [1 0 0] and [0 1 0] are not split in

accordance with (29). The L valleys remain unpopulated

in this case as they are much higher than the X valleys.

The decrease of l? and increase of lk is explained by the
population of the X valleys with orientation [0 0 1] which

contribute through mX
t to the in-plane and mX

l to the

perpendicular transport. Fig. 8 provides an explanation

of the mobility components for the substrate orientation

[1 1 1]. The X valleys are not split in accordance with

(30). When the Ge composition in the substrate in-

creases, the splitting of the L valleys becomes important.

The valleys with orientations ½�111�, ½�1�11� and ½1�11� go
up and remain empty while the L valley oriented along

[1 1 1] goes strongly down as stated by (33). This valley is

dominant at high Ge mole fractions. Now the in-plane

and perpendicular transport is determined by mL
t and mL

l

respectively. The increase of lk at high compositions y is
related to the decrease of the X ! L intervalley transi-

tions. l? does not increase due to the higher value of mL
l .

The range of Ge compositions where the X ! L transi-

tions are most effective can be seen in Fig. 9, showing the

band edges versus the substrate composition y.
Fig. 10 shows the dependence of lk on the in-plane

angle given by the third Euler angle c for [1 1 0] substrate
orientation. For substrates with a general orientation

the mobility becomes anisotropic. This means that the

in-plane mobility depends on the orientation of the de-
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vices built in the substrate. Thus in order to reach

optimal characteristics the active strained regions of a

device has to be properly oriented on the surface of the

substrate.

In Fig. 11 the low field electron mobility in undoped

Si1�xGex layers is given. The essential difference in

comparison with Si layers is that now alloy scattering

strongly influences the transport properties. Alloy scat-

tering as a function of the Ge composition x in the active

layer has its maximum at x ¼ 0:5. Therefore one might

expect that electron mobility has its minimum at the

same point. However, both the change of the effective

masses and repopulation effects between valleys, both of

the same and different types, can be strong enough to

suppress the decrease of the electron mobility due to

alloy scattering.
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Fig. 11. In-plane electron mobility lk in Si1�xGex on Si0:1Ge0:9
for several substrate orientations.
The in-plane components lk of the electron low field

mobility are presented in Fig. 11 as functions of the layer

composition x for several substrate orientations. The

Miller indices specify only two Euler angles a and b
while the third Euler angle c is assumed to be zero. Fig.

12 explains the behavior of the mobility components for

a Si0:1Ge0:9 substrate oriented along [2 2 1]. It shows the

populations of the X and L valleys with different orien-

tations. The L valley oriented along [1 1 1] is highly

populated up to x � 0:8 and thus the contribution of the

longitudinal effective masses of the L valley plays the

main role. This reduces the mobility components l? and

lk. The increase of the in-plane component lk is related

to the composition dependence of the effective masses.

When the Ge mole fraction is greater than x ¼ 0:8, a
repopulation between different L valleys occurs. First

electrons scatter from the valley located along [1 1 1] to

the valleys located along ½�111�, ½1�11� and ½�1�11� and then

from [1 1 1] and ½�1�11� to ½�111�, ½1�11�. In this way the

influence of the longitudinal masses reduces while the

transverse masses contribute more and more leading to

the rapid mobility increase at higher values of the Ge

mole fraction.

Figs. 13 and 14 demonstrate the doping dependence

of l? and lk in the Si active layer grown on a relaxed

Si0:1Ge0:9 substrate. In Fig. 13 the curve for the per-

pendicular component l? exhibits an increase for the

[0 0 1] substrate when the doping level becomes high

enough. At the same time the in-plane component does

not increase as shown in Fig. 14. This effect can be ex-

plained by the influence of the Pauli exclusion principle

which starts playing an important role at high doping

level. At low doping level the L valley oriented along

[1 1 1] is the lowest one. Its population is equal to 100%

(see Fig. 15) and l? is determined by mL
l , while lk is

determined by mL
t . As the donor concentration increases,

scattering to lower energy levels is forbidden by the

Pauli exclusion principle and thus electrons scatter to
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higher energy levels. At doping level about 1019 cm�3

electrons occupy energies high enough to allow for

scattering to the unsplit X valleys which due to strain

effects lie higher than the L valleys. Intervalley L� X
scattering becomes possible and gets stronger as the

donor concentration increases. Finally, electrons are

almost equally distributed among the X valleys. The
influence of mL
l on l? is significantly reduced and this

turns out to be enough to suppress the increasing ionized

impurity scattering. However, the X valleys are oriented

such that the influence of mX
l and mX

t on lk is not so

strong to suppress the impurity scattering and as a result

lk does not show an increase.
6. Conclusion

The behavior of the low field electron mobility in

strained Si1�xGex layers grown on relaxed Si1�yGey
substrates as a function of x, y and the orientation of the

substrate has been analyzed using a Monte Carlo ap-

proach. The strain effects have been treated in the linear

deformation-potential formalism applied to the X and L
valleys of the conduction band. The influence of the

conduction band minima splitting on the scattering

processes has been taken into account. A zero field

Monte Carlo method has been applied to solve the

nonlinear Boltzmann kinetic equation accounting for

the Pauli exclusion principle. Results obtained for the

electron mobility in strained layers have been discussed

for undoped and doped layers and arbitrarily oriented

substrates. The dependences on the Ge compositions x
and y and the donor concentration have been demon-

strated. The population of the conduction band minima

has been studied to explain the influence of the Pauli

exclusion principle in the strained material. The depen-

dence of the mobility on the in-plane angle has been

demonstrated. A pronounced anisotropy is observed.
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