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Abstract. A stochastic method for simulation of carrier transport in
semiconductor nanostructures is presented. The Wigner formulation of
quantum mechanics is used. The method which aims at evaluation of
mean values of physical quantities, is obtained by following the rules of
the Monte Carlo theory. A particular numerical feature of the method
are statistical weights with inverse signs which can achieve large absolute
values. They give rise to high variance of the simulation results, the
so called sign problem in quantum Monte Carlo simulations. A weight
decomposition approach is proposed which limits the value of a weight
by storing part of it on a phase space grid. Annihilation of positive and
negative stored weights, which occur during the simulation significantly
improves the variance of the method.

1 Introduction

The Wigner-function (fw) formalism has been recognized as a convenient ap-
proach to describe electron transport in mesoscopic systems. The formalism com-
bines a rigorous quantum-kinetic level of treatment with the classical concepts
for phase space and open boundary conditions. Moreover dissipation processes
introduced by phonons can be taken into account by adding the classical Boltz-
mann collision operator to the Wigner operator Vw [1]. The basic similarity with
the classical transport picture motivates a Monte Carlo (MC) method for solv-
ing the Wigner equation. For the sake of transparency the method is described
for the case of stationary, coherent one-dimensional transport. A generalization
for phonon scattering follows the same approach. The corresponding Wigner
equation reads:
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where V is the device potential, x is the position, and h̄k is the momentum.
The proposed method aims at evaluation of the mean value 〈A〉 of a given

physical quantity A(x, k). The basic expression is obtained by a series expansion
of 〈A〉 derived in the next section.
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2 The series expansion of 〈A〉

As a first step an integral form of the Wigner equation is obtained. A non-
negative function ν(x) is introduced, which will be determined later, and ν(x)f(x, k)
is added to both sides of (1). The characteristics of the differential operator are
classical Newton’s trajectories

x(t) = x + v(k)t, k(t) = k; v(k) =
h̄k

m

A trajectory (x(t), k(t)) is initialized by the phase space point (x, k) at time 0.
v(k) is the electron velocity and the parameterization is backward in time, t < 0.

Newton’s trajectories are used to transform (1) into the following integral
equation:

fw(x, k) =

∫ 0

tb

dt′
∫

dk′fw(x(t′), k′)Γ (x(t′), k(t′), k′)e
−

∫

0

t′
ν(x(y))dy

+ e
−

∫

0

t
b

ν(x(y))dy
fb(x(tb), k(tb)) (2)

Γ (x, k, k′) = ν(x)δ(k′ − k) + Vw(x, k′ − k)

Here tb is the time of the trajectory crossing point x(tb) with the device boundary,
where the Wigner function values fb are known.

The mean value 〈A〉 is defined by the inner product of A and fw:

〈A〉=

∫

dx

∫

dk f(x, k)A(x, k)

In this formulation 〈A〉 is obtained from the solution fw, which can be evaluated
by a backward MC method.

An alternative formulation leads to a forward MC method which directly
evaluates the mean value 〈A〉. Considered is the conjugate equation of (2) with
a free term A and solution g. The following relation can be established:

∫

dx

∫

dk f(x, k)A(x, k)=

∫

dx

∫

dk fb(x(tb), k(tb))e
−

∫

0

t
b

ν(x(y))dy
g(x, k) (3)

Equation (3) shows that the mean value of A is determined by the inner product
of the free term of (2) with the solution g of the conjugate Wigner equation.
The latter is obtained from (2) by applying the same steps used to derive the
conjugate Boltzmann equation [2].

g(x, k) =

∫ ∞

0

dt

∫

dk′Γ (x, k′, k)e
−

∫

t

0

ν(x(y))dy
θD(x)g(x(t), k′(t)) + A(x, k) (4)

Here the indicator θD(x) of the device domain D takes values 1 if x ∈ D and
0 otherwise. The trajectories are in a forward parameterization, t > 0. The last
term in (3) is also expressed in a forward parameterization [2]. Then the space
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integral gives rise to a time integral and a sum over the left and right boundaries
xl, xr of the one-dimensional device:

〈A〉 =
∑

xb=xl,xr

∫ ∞

0

dt0

∫

dki|v(ki)|fb(xb, ki)e
−

∫

t0

0

ν(x(y))dy
g(x(t0), k(t0)) (5)

The index i denotes the subspace of wave vectors pointing inside the device.
The iterative expansion of g, obtained from (4), is replaced in (5) which leads

to the series expansion:

〈A〉 =
∑

l

〈A〉l (6)

In this way the mean value of any physical quantity is determined by the velocity
weighted boundary conditions and the consecutive iterations of the conjugate
kernel K on the free term A. The expression for 〈A〉1 is shown as an instructive
example:

< A >1=
∑

xb=xl,xr

∫

dki

∫ ∞

0

dt0

∫ ∞

0

dt1

∫

dk1 |v⊥(ki)|fb(xb, ki)θD(xb(t0)) × (7)

e
−

∫

t0

0
ν(xb(y))dy

Γ (xb(t0), k1, kb(t0))e
−

∫

t1

0
ν(x1(y))dy

A(x1(t1), k1(t1))

Due to θD only that part of a Newton’s trajectory which belongs to D contributes
to 〈A〉1.

The series (6) is the main entity of the stochastic approach. Following the
MC theory, numerical trajectories are constructed which evaluate the consecutive
terms of the series. The numerical trajectories are constructed by an initial P
and a transition PP probability density chosen for this purpose. P is used to
choose the initial points of the numerical trajectories on the device boundary.
The initial density P is adopted from the classical single-particle MC method
[2], since |v|fb in (5) resembles the boundary term of the Boltzmann transport
case.

The trajectories are built up by consecutive applications of the transition
density PP . At each iteration i of the kernel a quantity called statistical weight
w is multiplied by the weight factor wi = K/PP . The random variable ξAi

whose realizations sample 〈A〉i is evaluated from the product of wA(xi , ki). The
random variable corresponding to 〈A〉 is given by ξA =

∑

i ξAi
.

The choice of the transition density plays an important role for the numer-
ical properties of the MC algorithm. The kernel can be expressed as a product
of a weight factor wi and conditional probability densities which comprise the
transition density PP :

K = PP1PP2 . . . wi

In the following two possible formulations are discussed. In the first case the
numerical trajectories are associated with particles which evolve on parts of
Newton’s trajectories, linked by scattering processes. The kernel is interpreted
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as a scattering operator. In the second case a weight decomposition is proposed.
This is achieved by splitting the evolving trajectory in phase space. The kernel
is interpreted as an operator which generates particles during the process of
evolution.

3 Scattering Interpretation of the Kernel

The kernel of (4) is augmented by extra factors, introduced in a way to conserve
the value of the integrand. They ensure the normalization of the conditional
probability densities which are enclosed in curly brackets.

K =

∫ ∞

0

dt

∫

dk′

{

ν(t)e
−

∫

t

0

ν(y)dy

}

1

θD(x(t))

({

ν(t)

µ(t)

}

2

{δ(k(t) − k′)}3

+

{

γ(t)

µ(t)

}

2′

{

|Vw(x(t), k(t) − k′)|

γ(t)

}

3′

sign(Vw)

)

×
µ(t)

ν(t)

The subscripts denote the order of application of these conditional probabilities.
{}1 generates a value of t, associated with a free flight time of a particle which
drifts over a piece of Newton’s trajectory between an initial state (x, k) at time
0, and the final state, (x(t), k(t)). The final state is used in the next probability
density to select the value k′. The transition between k(t) and k′ is interpreted as
scattering of the particle. {}2 is the probability to use the first kernel component
for selection of the after-scattering value of k′. Since µ = γ + ν, the second
component is selected according {}2′ = 1−{}2. Thus k′ is chosen either with the
probability density {}3 or with the probability density {}3′ . The normalization
of the latter is ensured by the function γ: γ(x(t)) =

∫

|Vw(x(t), k)|dk. The after-
scattering state (k′, x(t), t) is the initial state of a free flight for the next iteration
of the kernel.

The weight factor wi = ±µ(t)
ν(t) , where the sign is given by the sign of Vw,

multiplies the weight w accumulated by the trajectory. It can be shown that the
mean accumulated weight is evaluated by w̄ = ±eγT , where T is the dwelling
time of the particle in the device. Since the weight w̄ does not depend on ν, the
latter can be chosen according to some criteria of convenience. A choice ν = γ/2
gives rise to a weight factor wi = ±3.

For typical nanoscale devices γ ' 1015s−1, T > 10−12s so that w̄ and thus
the realizations of ξA which sample 〈A〉 become huge positive and negative num-
bers. The sample variance is orders of magnitude larger than the sample mean,
where positive and negative terms cancel each other. This problem, known as
the sign problem, exists also in stochastic approaches to alternative formulations
of quantum mechanics. For instance MC evaluations of Feynman path integrals
demonstrate an exponential growth of the variance with the evolution time [3].

Due to the sign problem, the application of the derived method is restricted
to single barrier tunneling and small barrier heights.
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4 Weight Decomposition Approach

The following modification of the method is proposed to overcome the problem
of the growing variance. The idea is to decompose the weight into a part which
continues with the trajectory and a part which is left for future processing. The
antisymmetric function Vw is decomposed into two positive functions: Vw =
V +

w − V −
w . With these functions ν can be expressed as ν = γ/2 =

∫

V ±dk. The
kernel is written as:

K =

∫ tb

0

dt

∫

dk′

{

ν(t)e
−

∫

t

0
ν(y)dy

}

1

(

{δ(k(t) − k′)}2

+

{

V +
w (x(t), k(t) − k′)|

ν(t)

}

2

−

{

V −
w (x(t), k(t) − k′)|

ν(t)

}

2

)

The three kernel components simultaneously create three after-scattering states.
Each state gives rise of a trajectory which must be simulated until it leaves the
simulation domain.

Two of the trajectories carry the weight of the trajectory before the scattering
event, the third one changes its sign. Since the initial weight at the boundary is
1, the absolute value of the weight of each trajectory remains 1. The following
picture can be associated to the transport process. With each iteration of the
kernel a positive (negative) particle undergoes a free flight and scattering event.

After the scattering event the particle survives in the same state with the
same weight due to the delta function. Additionally a positive and a nega-
tive particle are created by V ±

w . A phase space grid (n∆x, m∆k), n = 1, . . .N ,
m = −M, . . . , M is introduced, where all three particles are stored. The simu-
lated trajectory continues from the grid cell with the highest number of stored
particles. It is selected among all k cells with a position index m = int(x(t)/∆x)
where x(t) is the location of the scattering event.

Positive and negative particles have opposite contribution to the statistics.
They have the same probabilistic future if located close together in the phase
space and thus can be canceled. The active cancellation reduces the simulation
time leading to a variance reduction.

If phonon scattering is included the picture remains similar. The free flights
are additionally interrupted by the phonon scattering events, which as in the
classical case, only change the particle momentum.

5 Results and Discussions

The method has been applied for simulation of a resonant tunneling diode. A
double barrier structure from the literature [4] is used as a benchmark device.
Physical parameters of GaAs with a uniform 0.067 effective mass and a temper-
ature T= 77K assumed. The potential drop is linear across the central device,
the barriers have a thickness of 2.825nm and a height 0.27eV, the well is 4.52nm
wide. The device is shown schematically in Fig.1.
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Fig. 1. Electron concentration distribution in the central part of the resonant tunneling
diode for three different bias points.

Numerical results for the electron concentration, An(x0) = δ(x − x0), are
presented for three different values of the applied bias. The values correspond
to bias points near equilibrium, and the peak and valley current of the current-
voltage characteristics. The accumulation of electrons in the quantum well at the
resonance bias 0.13V respectively is well demonstrated. The physical quantity
which gives the current is AJ = qv(k)/LD where q is the electron charge and
LD is the length of the device. The current-voltage characteristics is shown on
Fig.2. The peak of the current at 0.13V is followed by a negative differential
mobility region, which is a typical feature of the resonant tunneling diodes.
The current-voltage characteristics are in good quantitative agreement with the
results obtained by other methods [5].

Fig.3. shows the current for the chosen three bias points as a function of the
number of scattering events. The latter quantity is an empirical measure of the
elapsed simulation time which is independent of the computer platform. 1010

scattering events correspond to a 24 hours simulation time on a 1GHz CPU.
The three curves illustrate the variations of the 〈AJ 〉 during the simulation.
Above 8.109 scattering events the variance of the corresponding values becomes
negligible.

6 Conclusions

The proposed weight decomposition method significantly improves the numer-
ical properties of the stochastic approach to the Wigner transport equation.
Annihilation of positive and negative weights reduces the computational effort
of the task. The method has proven suitable for the simulation of nanoelectronic
devices.
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Fig. 2. Current-voltage characteristics of
the resonant tunneling diode. The peak is
at resonance bias 0.13V.
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Fig. 3. Electron current for the chosen
bias points as a function of the number
of scattering events.
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