Double-gate (DG) MOS transistor structures have been proposed to boost the performance of scaled-down logic devices and to overcome some of the most severe problems encountered in bulk MOS field-effect transistors [1]. However, with channel lengths below 25 nm, the question of the importance of quantum effects in the lateral direction, such as source-to-drain tunneling, arises. Frequently, ballistic transport is assumed which allows the device to be simulated using pure quantum-mechanical approaches [2–4]. However, with carrier mean free paths in the range of several nanometers, scattering-limited transport may still be dominant which can be assessed using the Monte Carlo method by accounting for quantum-correction methods [5, 6]. An approach accounting for both, quantum interference phenomena and scattering processes, is based on the Wigner equation augmented by the Boltzmann collision operator,

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) f_w = \int V_w(\mathbf{r}, \mathbf{k}' - \mathbf{k}) f_w(\mathbf{k}', \mathbf{r}, t) d\mathbf{k} + \left(\frac{\partial f_w}{\partial t} \right)_{\text{coll}}$$

with the Wigner potential defined by

$$V_w(\mathbf{r}, \mathbf{k}) = \frac{1}{i\hbar (2\pi)^3} \int \left(V(\mathbf{r} + \mathbf{s}) - V(\mathbf{r} - \mathbf{s}) + q\mathbf{s} \cdot \mathbf{E} \right) e^{-i\mathbf{k} \cdot \mathbf{s}} d\mathbf{s}$$

This equation can be solved using the Monte Carlo method [7, 8]. We report on the enhancement of the Wigner Monte Carlo simulator described in [8] for the simulation of silicon-based devices. The algorithm for annihilation of numerical particles now takes into account the multi-valley band structure of silicon. As test devices we use double-gate MOSFETs with gate lengths of 60 nm, 25 nm, and 10 nm. For simplicity, metal gates with midgap work function have been assumed, and a silicon dioxide thickness of 0.75 nm without wave function penetration was used. A source/drain doping of $5 \times 10^{19} \text{ cm}^{-3}$ with abrupt doping profile and a channel doping of $1 \times 10^{15} \text{ cm}^{-3}$ was chosen, as shown for the 25 nm device in Fig. 1. Transport has been calculated non-selfconsistently in the first subband calculated by lateral quantization ($m_l=0.91 m_0$), based on a drift-diffusion simulation with MINIMOS-NT. Fig. 2 shows the conduction band edge and the respective subband along the channel. Fig. 3 shows the Wigner generation rate along the channel for a drain bias of 0.1 V and 0.8 V in a 60 nm gate length device. The mean electron energy is shown in Fig. 4, and the corresponding carrier concentrations of a 15 nm and 10 nm gate length device are depicted in Fig. 5 for a bias of 0.1 V and 0.8 V, respectively. The output characteristics of the 25 nm device shown in Fig. 6 indicates that at this gate length, devices are still dominated by scattering and the assumption of coherent transport overestimates the current density at least by a factor of two.

Figure 1: The double-gate MOS structure considered for the simulations.

Figure 2: Conduction band edge and first lateral ($m_l=0.91m_0$) and transversal ($m_l=0.19m_0$) subband.

Figure 3: The Wigner generation rate in the 60 nm device for different drain bias.

Figure 4: The mean particle energy in the 60 nm device for different drain bias.

Figure 5: The carrier concentrations in the 15 nm (top) and 15 nm (bottom) device at different drain voltages.

Figure 6: Output characteristics of the 25 nm device using classical, coherent Wigner, and non-coherent Wigner Monte Carlo.

A full journal publication of this work will be published in the Journal of Computational Electronics