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Abstract

Although many doubts have been raised concerning its accuracy, the macroscopic re-
laxation time approximation is often used to approximate the weighted averages of the
collision integral. More accurate approaches based on expansions of the distribution
function deliver better results. Unfortunately these models depend on the fluxes of the
system which causes a coupling of the flux relations. Our results indicate that this
coupling requires accurate models for the energy tensors to obtain an overall quality
improvement in the resulting transport model.

1 Introduction

Macroscopic transport models like the drift-diffusion (DD) model or the various hydro-
dynamic (HD) or energy-transport models can be derived from Boltzmann’s equation
by applying the method of moments [1]. Three approximations essentially determine
the accuracy of these models: first, the equation system has to be truncated after a cer-
tain order N to obtain a tractable equation set. Second, the tensors Ûi = 〈u ⊗ p E i−1〉
have to be approximated by the available moments which are the unknowns of the equa-
tion system, normally n = 〈1〉, wi = 〈E i〉, and Vi = 〈uE i〉. And finally, the moments
of the scattering operator Qi have to be modeled properly. Since the scattering operator
describes important physical properties of the system, this step is crucial. By expanding
the distribution function into its moments the odd moments of the scattering integral Q i

can be written as functions of the odd moments Vi [2, 3, 4] and we obtain

Qi = −
〈pE i

τp

〉
=

M∑
j=0

ZijVj
.= −q µ̂−1

i Vi with i = 0 . . .M , (1)

where τp is the microscopic momentum relaxation time [5], the matrix Ẑ is determined
by the scattering processes, M = N/2−1 is given by the order of the equation system,
and µ̂−1

i is the inverse mobility tensor which in general depends on all even moments
wi and all odd moments Vi. An example of this type is the Hänsch mobility model [2].
Within the macroscopic relaxation time approximation the mobility tensor is assumed
to be scalar and to depend only on the even moments w i. Most commonly the mobili-
ties are modeled as a function of the average energy w1 only. In the following we will
consider mobility data extracted from homogeneous bulk Monte Carlo simulations in
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analogy to the model proposed in [6]. Strictly speaking, the relaxation time approxi-
mation is valid only under very stringent conditions which are definitely not fulfilled in
modern deep-submicron devices [5, 7]. The failure of the relaxation time approximation
to approximate the moments of the scattering integral is well documented [1].

2 Modeling of the Closure Relations

In the following we will model the closure relations for the tensors Ûi and the compo-
nents of the scattering matrix Ẑ using an analytical distribution function model. It will
be assumed that the distribution function can be obtained by displacing an isotropic dis-
tribution with a small energy-dependent displacement κK(E) = κ

∑M
j=0 EjKj where

κ is the Knudsen number. This displaced distribution will then be expanded up to sec-
ond order. For the isotropic distribution we use a six moments description and a heated
Maxwellian distribution [4]. With this distribution function model and Kane’s non-
parabolic dispersion relation the moments of the scattering integral Q i obtained from
Monte Carlo simulations can be well reproduced [4]. Another important property of
this approach is that the tensors Ûi can be calculated up to second order. In particular,
we obtain a zero-order scalar contribution U i that depends only on the even moments w i

and a second-order contribution Û(2)
i that also depends on the fluxes Vi. For instance,

for the simplest case of parabolic bands and a displaced Maxwellian distribution (K =
K0 = m∗V0/�) we obtain the well-known expression Û1 = (2/3)wi Î+κ2m∗V0⊗V0.
In general, the second-order term is a second-order polynomial in the fluxes Vi. These
second-order terms express the fact that the total energy of the electron gas is not equally
distributed among the axes. This term is normally neglected in energy-transport models
because it introduces hyperbolic modes into the equation system [1].

3 The Coupled Flux Relations

By taking the moments of Boltzmann’s equation with the weight functions pE i we
obtain general flux equations of the form Ψ i = Qi. With the driving force given by the
electric field as F = −qE, the fluxes Ψi are obtained as

Ψi = −Ûi+1 ∇ log
1
n

+ ∇Ûi+1 − F(wi Î + iÛi) =
M∑

j=0

ZijVj . (2)

We now invert these implicit relations to obtain explicit relations for the fluxes Vi as [4]

Vi = µ̂i
F
q

+ D̂n
i ∇ log

1
n
−

M∑
j=0

Yij∇Ûj+1 (3)

with µ̂i = −q
M∑

j=0

Yij (wj Î + jÛj); D̂n
i = −

M∑
j=0

Yij Ûj+1 , (4)

where the coefficients Yij are the components of the matrix Ŷ = Ẑ−1 which provide
a coupling between the various flux equations (2). Within the relaxation time approxi-
mation there is no such coupling as the scattering tensor Ẑ reduces to a diagonal tensor
with Zii = −q/µBulk

i .
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4 Comparison

Evaluation of (4) using bulk Monte Carlo generated values for the moments w i gave an
unexpected result which is in contradiction to the results published in [3] (cf. Fig. 1):
When the second-order contributions to the tensors Ûi where neglected, the six mo-
ments model resulted in an error of 6% in the average velocity V0 even though the
scattering moments Qi where accurate within 0.5% (at E = 50 kV/cm). With in-
cluded second-order contributions the accuracy of the average velocity was in the ac-
curacy range of the scattering moments. A similar behavior was observed for the
model based on the heated Maxwellian distribution but with a relatively large error
at higher fields, independent of the order of truncation. The reason for this behavior is
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Figure 1: Comparison of V0 and Q0 from the
six moments model (SM) and the Maxwellian
model (HD) with Monte Carlo data (symbols).

that for an electric field given by E =
E ex, the fluxes Vi are determined by
the xx-component of the mobility ten-
sors µ̂i. Since for the coupled equation
system these mobility tensors depend
on all tensors Ûi, the xx-component is
significantly influenced by the second-
order contribution to Ûi. Note that this
is not the case for models based on the
relaxation time approximation where the
average velocity V0 is independent of
the tensors Ûi. Therefore, by design,
with homogeneous bulk mobility data
these models exactly reproduce V0.

To see how these models perform under
inhomogeneous conditions we use one-
dimensional cuts through the potential resulting from an ET transport solution of the
50 nm and 90 nm well-tempered MOSFETs [8] at VD = VG = 1 V. The resulting
fluxes for both models are shown in Fig. 2. Whereas the rigorous model is accurate
when the second-order contributions to the tensors Ûi are considered, a considerable
error is introduced when they are neglected. The relaxation time approximation model,
on the other hand, behaves the other way round and accurate results are only obtained
when the second-order contributions to Ûi are neglected.

5 Conclusions

We arrive at the following conclusions: Even though the relaxation time approxima-
tion cannot properly reproduce the moments Q i under inhomogeneous conditions, the
errors in Qi seem to compensate well with the errors in Ûi when the second-order con-
tributions are neglected. Using the more rigorous model for Q i based on the fluxes
of the system requires highly accurate (and complicated) models for the second-order
components of the tensors Ûi, which is unlikely to reach the stability required for rou-
tine TCAD applications. Although this might not seem satisfactory from a theoretical
point of view, relaxation time approximation based models employing tabulated or fit-
ted homogeneous Monte Carlo results for µBulk

i (w1) are a good compromise even for
sub-100 nm devices.
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Figure 2: Comparison of the average velocity V0 and the first moment of the scattering integral
Q0 predicted by the six moments model (SM) and the Maxwellian model (HD) with Monte
Carlo data (symbols) for the two test MOSFETs. Note the good agreement of the second-order
Ûi models plus analytical closure for Qi (O(2)) in Figs. (b) and (e) and of the zero-order Ûi

models plus relaxation time approximation (RTA) (O(0)) in Figs. (c) and (f).


