
A Non-Parabolic Six Moments Model for the Simulation of Sub-100 nm Devices
T. Grasser∗, R. Kosik∗, C. Jungemann†, H. Kosina◦, B. Meinerzhagen†, and S. Selberherr◦
∗ Christian Doppler Laboratory for TCAD in Microelectronics at the Institute for Microelectronics

† NST, TU Braunschweig, Germany; ◦ Institute for Microelectronics, TU Vienna, Austria
Email: Grasser@iue.tuwien.ac.at

Macroscopic transport models based on the first six moments of Boltzmann’s equation [1] are
a natural extension to the well known drift-diffusion (DD) model (two moments) and the various
hydrodynamic and energy-transport models (three or four moments) [2]. In addition to the solution
variables of the energy-transport (ET) model, which are the carrier concentration n = 〈1〉 and
the average energy w1 = 〈E〉, the six moments (SM) model provides w2 = 〈E2〉. The quantity
β = (3/5)w2/w

2
1 is the kurtosis of the distribution function and indicates the deviation from a

heated Maxwellian distribution for which β = 1 holds (for parabolic bands). Here we present
results of numerical solutions of consistent DD, ET, and SM models and compare them to self-
consistent analytic-band [3] and full-band [4] Monte Carlo (MC) simulation results.

The non-parabolic stationary balance and flux equations of the macroscopic moment models
are given in [5]. The mobilities, the relaxation times, and the non-parabolicity factors where taken
from tabulated bulk data of respective MC simulations and modeled as a function of the average
energy only. A critical issue is the modeling of the closure relation for the highest-order moment
which was required to be consistent with bulk MC simulations. In addition to the SM model we
consider the corresponding ET model, where the equation for w2 is kept but the equation for the
energy-flux V1 is closed with w2 = (5/3)w2

1, corresponding to a heated Maxwellian distribution.
The equation for w2 is therefore decoupled from the lower order equations and provides an estimate
for w2 and thus β [1, 6].

To investigate the accuracy of the SM model and its corresponding ET model we consider a se-
ries of one-dimensional n+-n-n+ structures simulated with a maximum electric field of 300 kV/cm.
A comparison of the average velocity V0 and the kurtosis β obtained from the macroscopic models
with the analytic-band MC simulation is shown in Fig. 1 for three devices. The spurious velocity
overshoot is significantly reduced in the SM model, consistent with previous results [7], while the
kurtosis produced by the decoupled SM (ET) model is only a poor approximation to the MC re-
sults for shorter channel lengths. An accurate kurtosis, however, is a prerequisite for modeling hot
carrier effects. The terminal currents as a function of the channel length are shown in Fig. 2, where
the ET model shows the well known overestimation for Lc ≤ 100 nm while the DD model under-
estimates for Lc ≤ 500 nm. The SM model stays close to the MC results down to Lc = 40 nm.

In addition we simulated the 50 nm double-gate MOSFET from [8] and compared the results
to self-consistent full-band MC results. To avoid empirical surface scattering models, where con-
sistency between all models is difficult to obtain, we omit surface scattering altogether for the
present comparative study. To avoid unrealistic mobility values, the channel doping was set to
NA = 1.25 × 1018 cm−3, electrically compensated by a similarly large donor doping ND. The
simulation results in Fig. 3 show the same qualitative behavior as found in the n+-n-n+ structures.
Altogether it was found that the SM model stays much closer to the MC results than the ET model,
which makes the SM model a good choice for modeling sub-100 nm devices.
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Figure 1: Comparison of the average velocity and the kurtosis obtained from the macroscopic models with self-
consistent analytic-band MC (ABMC) simulations for three n+-n-n+ structures.
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Figure 2: Comparison of the n+-n-n+ structure termi-
nal currents obtained from the macroscopic models with
self-consistent analytic-band MC (ABMC) simulations
for various gate lengths.
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Figure 3: Comparison of the output characteristics ob-
tained from the various models with self-consistent full-
band Monte Carlo (FBMC) simulations for the 50 nm
and 250 nm double-gate MOSFET.
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