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ABSTRACT

We present concepts and an implementation of a generally
applicable module which allows to efficiently assemble
equations. Such a module is required for solving a system
of nonlinear partial differential equations discretized on a
grid. Since the nonlinear problem is then usually solved by
a damped Newton algorithm the solution of a linear equa-
tion system has to be obtained at each step. Our assem-
bly approach for these systems has been originally devel-
oped for the simulation of semiconductor devices based on
the Finite Boxes discretization scheme. The implemented
module which is not restricted to this field of application,
is currently employed in two numerical simulators devel-
oped at the Institute for Microelectronics. In addition to
the equation assembly, it provides several functionalities
relevant for the simulation process and numerical stability,
namely the representation of boundary and interface con-
ditions, physically motivated variable transformation, and
numerical conditioning of the system matrices.
Keywords: Linear Equation Systems, Numerical Simula-
tor Development, Linear Solvers, Sorting, Scaling

MOTIVATION

Handling equations is a fundamental but involved task re-
quired in many numerical simulators. Basically, all models
calculate and store their contributions to linear equation
systems which are passed to a solver module in order to
get the solution vector. In the following several motiva-
tions are given, why the separation of respective simulator
functions and the modules responsible for linear systems
functionality is highly desirable.
Due to specific properties of the assembled linear equation
systems (e.g. equations that are not diagonal-dominant),
they cannot be generally solved in reasonable time. Thus,
they require additional conditioning measures which can
be performed independently and after the assembly pro-
cess. For example, the assembly module can provide facil-
ities to transform these systems to improve the subsequent
solving process in terms of convergence, time, and mem-

ory consumption. Furthermore, the interface functions of
different solver modules lack a standard definition. The re-
sulting problems, for example the matrix storage format,
can be addressed by an independent module with com-
pletely encapsulated data structures. For that reason the
coupling of a new solver module requires an adapted or
new assembly-solver interface, but the simulator-assembly
interface remains unaffected. In an abstract way the sim-
ulator can be seen as a client process using the services
provided by a numerical server. On the other side, the re-
spective model (client) developer can use an abstract ap-
plication programming interface (API of the server) and
is exempted of special considerations regarding the linear
equation systems.

In this work we start with a short introduction into the tar-
get field of application. Therefore, we define an analytical
problem and sketch its discretization in order to present the
functionality of the module in the context of a typical ex-
ample. The module itself is available as a shared library
for various platforms.

INTRODUCTION

The Finite Boxes discretization method [1] is employed in
various kinds of numerical tools and simulators for the fast
and accurate solution of nonlinear partial differential equa-
tion (PDE) systems. The resulting discretized problem is
then usually solved by damped Newton iterations which re-
quire the solution of a linear equation system at each step.
The extensibility and effectiveness of any simulator highly
depends on the capabilities of the core modules responsi-
ble for handling the linear equation systems. We present
an advanced equation assembly module which is currently
employed in the device and circuit simulator MINIMOS-
NT [2] and in the Finite Elements Diffusion and Oxidation
Simulator FEDOS [3]. The simulation of semiconductor
devices with MINIMOS-NT is used to illustrate the various
concepts hereinafter.
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MINIMOS-NT is a general purpose device and circuit sim-
ulator that has been developed at the Institute for Micro-
electronics for twelve years. Besides the basic semicon-
ductor equations, several different types of transport equa-
tions can be solved. Among these are the hydrodynamic
equations which capture hot-carrier transport [4, 5] the lat-
tice heat flow equation to cover thermal effects like self-
heating, and the circuit equations to connect single de-
vices to a circuit [6], both electrically and thermally. Fur-
thermore, various interface and boundary conditions are
taken care of, which include Ohmic and Schottky contacts,
thermionic field emission over and tunneling through vari-
ous kinds of barriers. This demands a sophisticated system
handling the equation assembly, in order to keep the sim-
ulator design flexible. To implement such a system, the
requirements have been identified and generalized.
A crucial aspect is also the requirement of assembling and
solving complex-valued linear equation systems which are
needed during small-signal and noise simulations directly
in the frequency domain.

THE ANALYTICAL PROBLEM

In order to analyze the electronic properties of an arbitrary
semiconductor structure under all kinds of operating con-
ditions, the effects related to the transport of charge carriers
under the influence of external fields must be modeled. In
MINIMOS-NT carrier transport can be treated by the drift-
diffusion and the hydrodynamic transport models.
Both models are based on the semiclassical Boltzmann
transport equation which is a time-dependent partial
integro-differential equation in the six-dimensional phase
space. By the so-called method of moments this equation
can be transformed to an infinite series of equations. Keep-
ing only the zero and first order moment equations (with
proper closure assumptions) yields the basic semiconduc-
tor equations (drift-diffusion model).
These equations as first given by VanRoosbroeck [7] are
the Poisson equation (1) (derived from Maxwell’s equa-
tions), the continuity equations for electrons (2) and holes
(3) including a drift and diffusion term:

div(ε ·grad ψ) = −ρ (1)

div(Dn ·grad n−µn ·n ·grad ψ) = R+
∂n
∂t

(2)

div(Dp ·grad p+µp · p ·grad ψ) = R+
∂p
∂t

(3)

The unknown quantities of this equation system are the
electrostatic potential ψ, and the electron and hole concen-
trations n and p, respectively. ε is the dielectric permittivity
of the semiconductor, ρ denotes the space charge density,
Dn and Dp are the diffusion coefficients, µn and µp stand
for the carrier mobilities, and R describes the net recombi-
nation rate. These variables depend on the unknown quan-
tities ψ, n, and p and have to be modeled properly [8]. The

equation system is rendered by these models in a nonlinear
form.

The heat flow equation (4) may be added to account for
thermal effects in a device:

div(κL ·gradTL) = ρL · cL (4)

This equation requires proper modeling of the thermal con-
ductivity κL, the mass density ρL, and the heat capacity cL.
The parameters of equations (1) to (3) depend also on the
lattice temperature TL and have again to be modeled prop-
erly.

Considering two additional moments gives the hydrody-
namic model [5], where the carrier temperatures are al-
lowed to be different from the lattice temperature. Since
the current densities depend then on the respective carrier
temperature, two additional unknowns, the electron tem-
perature Tn and the hole temperature Tp, are added.

Basically, a device structure can be divided into several
segments to enable simulation of advanced heterostruc-
tures and to properly account for all conditions (which may
cause very abrupt changes) at the contacts and interfaces
between these segments, respectively. Every segment re-
presents an independent domain D in one, two, or three di-
mensions where the PDEs are posed. The equations are im-
plicitly formulated for a quantity x as f(x) = 0 and termed
control functions. In order to fully define the mathematical
problem, suitable boundary conditions for contacts, inter-
faces, and external surfaces have to be applied.

Generally, such a system cannot be solved analytically,
and the solution must be calculated by means of numerical
methods. This approach normally consists of three tasks:

1. The domain D is partioned into a finite number of
sub-domains Di, in which the solution can be approx-
imated with a desired accuracy.

2. The PDE system is approximated in each of the sub-
domains by algebraic equations. The unknown func-
tions are approximated by functions with a given
structure. Hence, the unknowns of the algebraic equa-
tions are approximations of the continuous solutions
at discrete points in the domain. Thus, generally a
large system of nonlinear, algebraic equations is ob-
tained with unknowns comprised of approximations
of the unknown functions at discrete points.

3. A solution of the unknowns of the nonlinear algebraic
system must be computed. In the best case an exact
solution of this system can be obtained, which repre-
sents a good approximation of the solution of the ana-
lytically formulated problem (which cannot be solved
exactly). The quality of the approximation depends
on the resolution of the partitioning into sub-domains
as well as on the suitability of the approximating func-
tions.
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THE DISCRETIZED PROBLEM

For the derivation of the discrete problem several methods
can be applied. We deal here with point residual methods:
the Finite Difference method based on rectangular grids or
the Finite Boxes (box integration) method allowing general
unstructured grids. In the case of orthogonal rectangular
grids both methods yield the same discretization.
Nonlinear partial differential equations of second order
can appear in three variants: elliptic, parabolic, and hy-
perbolic PDEs. The Poisson equation as well as the
steady-state continuity equations form a system of ellip-
tic PDEs, whereas the time-dependent heat-flow equation is
parabolic. To completely determine the solution of an el-
liptic PDE boundary conditions have to be specified. Since
parabolic and hyperbolic PDEs describe evolutionary pro-
cesses, time is an independent variable and an initial con-
dition is additionally required. Hence, also the transient
continuity equations are parabolic.
Applying the Finite Boxes discretization scheme [1] the
equations are integrated over a control volume (sub-
domain, usually obtained by a Voronoi tesselation). Grid
points on the boundary ∂D are defined as having neighbor
grid points in other segments. Thus, the segment models
are not able to assemble the complete control functions,
since all contributions of fluxes into the contact or the other
segment are missing. For that reason, the information for
these boxes has to be completed by taking the boundary
conditions into account. Common boundary conditions are
the Dirichlet condition which specifies the solution on the
boundary ∂D, the Neumann condition which specifies the
normal derivative, and the linear combination of these con-
ditions giving an intermediate type:

n ·gradx+σx = δ (5)

Generally, the form of these conditions depends on the re-
spective boundary models. For that reason the equation
assembly is often performed in a coupled way, causing
complicated modules. For instance, it is absolutely neces-
sary to differ between segment and boundary points. Con-
sidering a general tetrahedron, there exist many kinds of
boundary points (depending on the number of edges in-
volved), which have to be treated separately. This leads to
a complicated implementation of the models and can make
simplifications necessary. Thus, due to organizational and
implementational issues this form of coupling should be
avoided.
It was shown [9] that more complex models with exponen-
tial interdependence between the solution variables such as
thermionic field emission interface conditions can also be
implemented.
The method which has been developed allows to imple-
ment the segment models which describe the interior fluxes
and their derivatives independently from the boundary
models. The segment models do not have to differenti-
ate the point type, they do not even have to care about the

boundary model used. The assembly system is responsi-
ble for combining all relevant contributions by using the
information given by the boundary models. For a detailed
discussion of the interface and boundary conditions of this
approach see [10].

ASSEMBLY OF THE COMPLETE
LINEAR EQUATION SYSTEM

The semiconductor device is divided into several segments
that are geometrical regions employing a distinct set of
models. The implementation of each model is completely
independent from other models and each model is basically
allowed to enter its contributions to the linear equation sys-
tem. All boundary and interface issues are completely sep-
arated from the general segment models. Hence, also com-
pletely independent assembly structures for the boundary
and segment system are used.
Thus, the system matrix A (the Jacobian matrix in the
Newton approximation) will be assembled from two parts,
namely the direct part Ab (boundary models) and the trans-
formed part As (segment models). The latter is multiplied
by the row transformation matrix Tb from the left before
contributing to the system matrix A. The right hand side
vector b is treated the same way:

A = Ab +Tb ·As (6)

b = bb +Tb ·bs (7)

A ·x = b (8)

Although in principle every model is allowed to add en-
tries to all components, the assembly module checks two
pre-requisites before actually entering the value: first, the
quantity the value belongs to is marked to be solved (the
user may request only a subset of all provided models)
and secondly the priority of the model is high enough to
modify the row transformation properties. As stated be-
fore, the row transformation is used to complete missing
fluxes in boundary boxes. Since a grid point can be part
of more than two segments, a ranking using a priority has
been introduced. For example, contact models have usu-
ally the highest priority and thus their contributions are al-
ways used for completion. All three matrices Ab, As, and
Tb, and the two vectors bb and bs may be assembled simul-
taneously, so no assembly sequence must be adhered to. In
addition, a fourth matrix Tv is assembled which contains
information for an additional variable transformation.

THE ASSEMBLY MODULE

As stated before, two separate modules are provided for
assembling and solving linear equation systems:

1. the assembly module which is directly accessed by
the implemented physical models of the simulator,
provides an effective application programming inter-
face, various transformation algorithms and the pre-
elimination system. In addition, sorting and scaling
plug-ins can be called.
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Figure 1: Schematic overview.

2. the solver module which is plugged into the assembly
module, is responsible for solving the so-called inner
linear equation system.

The Application Programming Interface provides methods
for

• adding values to the segment system

• adding values to the boundary system

• adding values to the transformation matrix

• deleting equations

• setting elimination flags

• administration of priority information

In addition, a rigorous input/output system is provided in
order to support the developer with detailed information on
the matrices and the solving process. All matrices or the
equation systems can be written to files (frequently needed
for model debugging purposes) or read from files to test
alternative solver configurations. An additional functional-
ity, employed for the matrix structure figures in this paper,
allows to create input matrices for the Open Visualization
Data Explorer [11].
A schematic overview of the complete concept is given in
Fig. 1. In the upper left corner the Newton iteration control
function IterateOnce of the simulator is represented. Fol-
lowing the solid lines beginning at the interface, four matri-
ces (segment, boundary, and two transformation matrices)
are assembled by using a specific storage class: all diago-
nal elements are stored in one array, and the off-diagonals,

the positions of which are not known in advance, in a bal-
anced binary tree for each row, sorted by column. This
allows flexible adding of all entries of the sparse matri-
ces. Note, that the right-hand-side vectors are analogously
assembled, compiled and transformed, which is not sepa-
rately shown in Fig. 1.
These structures are then converted to the Modified Sparse
Compressed Row (MCSR) format [12] and are compiled re-
sulting in the complete linear system (auxFLG in Fig. 1).
The row transformation performs a linear combination of
rows to extinguish large entries.
The variable transformation is used to reduce the coupling
of the semiconductor equations. Especially in the case of
mixed quantities in the solution vector, a variable trans-
formation is sometimes helpful to improve the condition
of the linear system. The representation chosen here al-
lows to specify fairly arbitrary variable transformations to
be applied to the system. Basically, a matrix Tv is assem-
bled and multiplied with the system matrix. See Fig. 2 for a
completely compiled matrix arising from the discretization
of a two-dimensional MOS transistor structure.
The preelimination is required to eliminate problematic
equations (e.g. those with large off-diagonal entries or
structurally different equations of the boundary conditions)
by Gaussian elimination in order to improve the condition
of the inner system matrix. Matrix As consists of fluxes
that will (if the control functions are correctly assigned to
the variables) satisfy the criterion of diagonal-dominance
that is necessary to make the linear equation system solv-
able with an iterative solver. The transformations and ad-
ditional terms imposed by the boundary conditions may
heavily disrupt this feature both in structural and numeri-
cal aspects. Some of the boundary or interface conditions
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can make the full system matrix so ill-conditioned that this
simply prevents iterative linear solvers from converging.
See Fig. 3 how the preelimination affects the system ma-
trix.

The Newton adjustment levels (dashed lines) reuse already
existing MCSR structures, which reduces the assembling
effort: the balanced trees may be skipped completely, and
during compiling and preelimination much simpler func-
tions (bold boxes) can be used than in the conventional
mode (bold boxes with slash). A related feature incorpo-
rates the sorting of the inner system matrix into the reorder-
ing phase of the preelimination process. All these features
together achieve a performance gain up to 11%.

But there are various additional speed-up features: in some
simulations, e.g. the calculation of the complex-valued ad-
mittance matrix, the system matrix remains constant while
several sets of different boundary conditions only affect the
right-hand-side vectors. In such a case the effort for as-
sembling, compiling, preeliminating, sorting, scaling and
factorizing of the system matrix actually has to be spent
only once - and this factored matrix could then be used for
all right-hand-side vectors. The solution vectors are mul-
tiply calculated during the relatively fast back-substitution
step. In addition, the assembly of the real-valued part of
the system matrix can be skipped during a frequency step-
ping which affects the imaginary contributions only.

After the preelimination, specific plug-ins are called for
sorting and scaling. Matrices arising from the discretiza-
tion of differential operators are sparse, because only
neighbor points are considered. To reduce memory con-
sumption, only the non-zero elements are stored (MCSR

format). During a factorization of A into an upper and
lower triangular matrix A = L ·U, additional matrix ele-
ments known as fill-in [1] become non-zero. The profile

p(A) =
n

∑
i=1

mi with mi = i− min
ai, j 6=0

( j) (9)

is a measure for this fill-in and the bandwidth of the ma-
trix is maxi(mi). Since storing of p(A) requires additional
memory, the equations are specially ordered to reduce the
bandwidth and thus the profile. The standard module pro-
vided by default is based on a Cuthill-McKee algorithm
[13]. It is applied in such a way that row and columns are
correspondingly swapped to keep the diagonal dominance.
Fig. 4 shows the effect of the reordering plug-in.

Since a threshold value (tolerance) is used to decide
whether to keep or skip an entry, the ILU preconditioner
requires a system matrix having entries of the same order
of magnitude. To provide a normalized representation of
the matrix, a scaling of all values has to be performed. The
standard algorithm used by default works with a two-stage
strategy [14]: In the first stage, the matrix is scaled such
that the diagonal elements are one. The second stage at-
tempts to suppress the off-diagonals while keeping the di-
agonals at unity.

Figure 2: The completely compiled system matrix of a dis-
cretized two-dimensional MOS transistor structure assem-
bled by MINIMOS-NT.

Figure 3: The inner system matrix does not contain the
problematic equations any more, e.g. the equations in rows
1-44 of the complete system matrix in Fig. 2.

Figure 4: In comparison to the preeliminated structure, the
reordering algorithm significantly reduced the bandwidth
in order to reduce the factorization fill-in.
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INTERFACE TO THE SOLVER MODULE

The assembly module has a standardized interface to solver
modules. Thus, the scaled inner equation system is directly
passed to the solver module in order to get the solution
vector for that system.

This module offers two iterative solvers, BICG-STAB and
GMRES(m), in combination with a preconditioner based on
Incomplete-LU factorization. In addition, a direct Gaus-
sian LU factorization is provided, but also external solver
modules can be coupled by the interface. At the moment,
two external modules can be employed: First, the Parallel
Sparse Direct Linear Solver PARDISO [15], which provides
a multi-threaded direct solver as well as a LU-CGS itera-
tive solver implementation. Second, the Algebraic Multi-
grid Methods for Systems (SAMG) [16], which provides
multi-level algorithms. Both external packages are writ-
ten in Fortran. Their only computational overhead is the
required matrix storage format conversion. As this inter-
face is part of the assembly module, the simulator remains
completely unaffected, but has the opportunity to switch
simply between the offered modules.

The solver module in charge is expected to return the so-
lution vector of the inner equation system, which is fur-
ther processed by the assembly module. After reverting
all transformations and back-substituting the preeliminated
equations, the output of the assembly module is the com-
plete solution vector. In addition, the right-hand-side vec-
tor is returned which can be used for various norm calcu-
lations.

CONCLUSION

We presented the concept and implementation of an ad-
vanced assembly approach successfully applied in the sim-
ulators MINIMOS-NT and FEDOS. All conceptional and
numerical features required for assembling and solving lin-
ear systems arising from semiconductor device, circuit,
and process simulation are provided. We developed a for-
mulation which allows to independently treat segments,
boundaries, and interface models. As a consequence, all
fluxes over boundaries are available as solution variables,
which simplifies the formulation of boundary conditions
and circuit equations.

A rigorous application programming interface is provided.
The assembly and solver module is controlled with a a
large set of parameter, which are incorporated in a single
parameter class to centralize the input and output informa-
tion. In addition, the simulator developer is supported by
error and input/output systems.

The presented concepts result in superior stability of the
simulators without restricting model implementation and
further development. The general approach for treating
boundary conditions yields in combination with several
preconditioning measures diagonal-dominant linear equa-
tion systems well prepared for advanced solver algorithms.
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[15] O. Schenk and K. Gärtner, “Solving Unsymmetric Sparse
Systems of Linear Equations with PARDISO,” Future Gen-
eration Computer Systems, 2003. Accepted, in press.
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