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ABSTRACT

It is shown that the conductance in nanoscale devices
depends already at equilibrium strongly on the choice of
the transport model. Errors larger than a factor of two
can be encountered, if the drift-diffusion (DD) model is
used instead of a model based on the full Boltzmann
transport equation (BTE). This effect is captured only
partially by hydrodynamic (HD) models, because the
longitudinal diffusion constant of those models is usu-
ally smaller than the one of the BTE. Since the macro-
scopic models overestimate the conductivity near equi-
librium, the DD and HD approximations might not be
sufficiently accurate for reverse engineering or compact
modeling of nanoscale devices in the linear regime.

Keywords: drift-diffusion, hydrodynamic, Boltzmann
transport equation, small-signal, equilibrium

1 Introduction

The shrinking of the device dimensions below 100 nm
is pushing the classical TCAD tools like the DD or
HD models to their limits. While the impact of the
shrinking on the accuracy of the classical simulators
has been investigated extensively for strong nonequilib-
rium (e.g. [1–3]), this is not the case for linear transport.
In Ref. [4] it is shown that even under equilibrium con-
ditions device results of the momentum-based models
might deviate from the exact solution of the BTE due
to built–in fields. This phenomenon is especially strong
in nanoscale devices because of the small feature size
and huge built–in fields. The impact of this effect on
the accuracy of the DD and HD models is investigated
for the first time in this work for nanoscale devices.

2 Theory

The balance equations of the particle and current
densities can be derived from the Boltzmann transport
equation without any approximations [5, 6]. For the
sake of brevity only the stationary nondegenerate unipo-
lar 1D case for electrons in silicon is discussed and gener-
ation/recombination processes are neglected. The con-

tinuity equation reads in this case

∂j

∂x
= 0 , (1)

where j is the particle current density in x-direction.
The constitutive equation of the current density is given
by

j = −nµE − D
∂n

∂x
− n

(
∂D

∂x
− F

)
. (2)

n is the particle density, E = −∂Ψ/∂x the electric field,
and Ψ the electrostatic potential. The transport param-
eters are expectations of the distribution function in k-
space. The mobility reads: µ = q〈∂τvx/∂�kx〉, the dif-
fusion constant: D = 〈τv2

x〉, and F = 〈v2
x∂τ/∂x〉, where

τ is the microscopic relaxation time, �kx the quasi-
momentum, and vx the group velocity in x-direction [6–
8].

The quasi-Fermi potential Φ is obtained by a nonlin-
ear transformation: n = ni exp

(
(Ψ − Φ)/UBTE

)
, where

ni denotes the intrinsic particle concentration, UBTE =
kBTBTE/q the thermal voltage, and TBTE the particle
gas temperature, which is defined by the Einstein rela-
tion UBTE = D/µ. Eq. (2) now reads

j = nµ

[
∂Φ
∂x

+
Ψ − Φ
UBTE

∂UBTE

∂x
− 1

µ

(
∂D

∂x
− F

)]
, (3)

where all three terms in the square brackets vanish for
equilibrium. In order to investigate ohmic transport,
Eqs. (1) and (3) are linearized for equilibrium resulting
in

∂δj

∂x
= 0 , (4)

and

δj = n0µ0

[
∂δΦ
∂x

+
Ψ0 − Φ0

U0

∂δUBTE

∂x

− 1
µ0

(
∂δD

∂x
− δF

)]
. (5)

The subscript 0 denotes an equilibrium quantity and δ a
small-signal variable. Due to Eq. (4) the current density
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is position independent and∫ L

0

δjdx

n0µ0
= qAδj

∫ L

0

dx

qAn0µ0
=

δI

GDD
0

=

∫ L

0

∂δΦ
∂x

+
Ψ0 − Φ0

U0

∂δUBTE

∂x
− 1

µ0

(
∂δD

∂x
− δF

)
dx ,

(6)

with L being the length of the 1D device, A its cross
section, δI = qAδj the terminal current, and GDD

0 =
qA/

∫ L

0
dx/n0µ0 the small-signal conductance at equi-

librium based on the DD approximation.
The integral over the first term on the RHS yields∫ L

0
∂δΦ/∂xdx = δΦ(L) − δΦ(0) = δV , where δV is the

small-signal terminal bias. Rearrangement of the RHS
(e.g. δUBTE/δV = ∂UBTE/∂V ) and integration by parts
yields

δI

GDD
0

=(
1 +

∫ L

0

1
U0

∂UBTE

∂V
E0 − 1

µ0

(
∂2D

∂V ∂x
− ∂F

∂V

)
dx

)
δV

≈
(

1 +
∫ L

0

1
U0

∂UBTE

∂V
E0dx

)
δV , (7)

where the approximation holds exactly for highly doped
contacts and a position-independent microscopic relax-
ation time. The small-signal conductance derived from
the BTE reads therefore at equilibrium

GBTE
0

GDD
0

≈ 1 +
∫ L

0

1
T0

∂TBTE

∂V
E0dx . (8)

The integral yields negative values, because the source
of a change in the particle gas temperature is the Joule
term, which is proportional to the electric field and a
positive electric fields leads to a decrease in temperature
for current flow in the positive x-direction. Thus, in
the case of nonzero built-in fields the conductance at
equilibrium calculated with the BTE is smaller than the
DD result.

A similar effect is found in the case of HD models.
The Einstein relation of the generalized HD model reads
D = µfUHD, where THD = qUHD/kB is the dynamic
temperature and f = τj/τ

∗
j [9]. The diffusion term of

Eq. (2) is approximated by

D
∂n

∂x
+ n

(
∂D

∂x
− F

)
≈ µf

∂nUHD

∂x
. (9)

This yields for the conductance

GHD
0

GDD
0

= 1 +
∫ L

0

(
1 + T0

∂f

∂THD

)
1
T0

∂THD

∂V
E0dx

≈ 1 +
∫ L

0

1
T0

∂THD

∂V
E0dx , (10)
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Figure 1: Electron gas temperatures T BTE, THD and
longitudinal diffusion constants for bulk silicon with a
donor concentration of 1015/cm3 at room temperature.

where the approximation holds due to T0∂f/∂THD � 1
for the HD model.

Although Eqs. (8) and (10) look similar, they do not
yield the same results, because they are based on very
different definitions of the temperature

THD =
m∗

3kB
〈v2〉 , (11)

TBTE =
qD

kBµ
, (12)

where 1/m∗ is the expected value of the inverse mass
at equilibrium [9]. Both definitions yield at equilibrium
the lattice temperature. In the case of the BTE the
temperature is defined by the Einstein relation, whereas
in the HD case the Einstein relation is used to calculated
the diffusion constant for a given dynamic temperature.
Therefore, the diffusion constants of the BTE and HD
models differ.

3 Results

The two temperatures TBTE, THD are shown in Fig. 1
for lowly doped bulk silicon based on the electron model
of Ref. [10] and TBTE is always larger than THD. This
means that the exact diffusion constant of the BTE is
much larger than the one of the HD model at high driv-
ing fields. Consequently, one can expect that ∂T BTE/∂V
will be larger than ∂THD/∂V and GBTE

0 < GHD
0 < GDD

0 .
In Fig. 2 the electron density and mobility at zero

bias is shown for a Si N+NN+-structure, where the N -
region is 400 nm long and doped with 2× 1015/cm3. At
both ends of the N -region 100 nm long regions with a
doping of 5 × 1017/cm3 are attached. Due to the in-
homogeneous doping built-in fields form (Fig. 3) and a
linear response of the temperature with the applied bias
is observed. This is only possible in the case of built-
in fields. Otherwise the response at equilibrium would
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Figure 2: Electron density and mobility for the 400 nm
Si N+NN+-structure at zero bias and room tempera-
ture.
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Figure 3: Electric field and small-signal response of the
temperature (∂T/∂V ) for the device shown in Fig. 2 at
zero bias.

be quadratic with bias and the conductance would be
the same for the DD, HD, and BTE models. The value
of the conductance at equilibrium relative to the DD
model is for the HD case 92.8% and the BTE 80.0%.
The large differences between the HD and BTE results
are due to the weaker response of the HD temperature
(Fig. 3). These differences increase in smaller devices.
If the length of the N+NN+-structure is reduced by a
factor of 10 and the doping increased by 100, GHD

0 is
71% of GDD

0 and GBTE
0 only 43%. This effect has also

a strong impact on the nonequilibrium transport. In
Fig. 4 the I-V curve for the scaled N+NN+-structure
with a 40 nm long lowly doped region is shown. The
crossover of the DD and HD currents is at 49 mV and
BTE and DD at 173 mV. The overestimated conduc-
tance at zero bias is the reason why the overall accu-
racy of the DD model compared to BTE appears to be
better than the HD model. A similar behavior is found
in the case of a 50 nm DG-MOSFET (Fig. 5) [3], where
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Figure 4: Terminal current versus bias for the 40 nm
N+NN+-structure at room temperature.
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Figure 5: Drain current of a 50 nm DG-NMOSFET for
a gate bias of 1.0V and room temperature.

the surface mobility models were turned off because of
differences in their formulation.

4 Conclusions

We have shown that the conductance of nanoscale
devices depends at zero bias strongly on the choice of
the transport model. This is due to the differences in
the definition of the temperature and the corresponding
Einstein relation. It turns out that part of the error in
the terminal current due to the DD approximation at
high bias is compensated by the overestimation at low
bias. The overall accuracy of the DD approximation
for the terminal current is therefore accidentally better
than expected. Nevertheless, the application of the DD
model in the linear regime (e.g. inverse modeling, com-
pact models) appears to be problematic for such devices.
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