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Quantum mechanical tunneling has significant affects on the characteristics of state
of the art electrical devices. The major source of tunneling electrons in resonant-
tunneling diodes (RTDs) and in the inversion layers of MOS-structures represent
quasi-bounds states (QBS). The contribution of each QBS to the tunneling current
follows
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where gν denotes the valley degeneracy, m‖ the parallel mass, and mq the quantization
masses, and τν(Eν,i) is the lifetime of the quasi-bound state Eν,i. Thus, the calculation
of tunneling currents is based on the accurate determination of the QBS which follows
from the Schrödinger equation:

−
~

2

2
∇ · (m̃∗

∇Ψ(x)) + V (x)Ψ(x) = EΨ(x) . (2)

Since the wavefunction of a closed quantum system cannot carry any current open
boundary conditions have to be applied for an accurate description of tunneling elec-
trons. Then, the QBS are determined by the eigenstates of the Hamiltonian. The
QBS lifetimes are related to the imaginary parts of the eigenvalues: τi = ~/2Ei.
A widely used method to introduce open boundaries for (2) is the quantum-trans-
mitting boundary method (QTBM) where the Hamiltonian becomes non-Hermitian
and non-linear. The energetic position and the lifetime broadening of the QBS follows
from an scanning of the derivative of the phase of the reflection coefficient or the
reflection coefficient itself. However, these method’s are hardly applicable to the
energy barriers of MOS capacitors because energy resolutions in the peV regime would
be necessary to accurately resolve the full-width half maximum (FWHM) value, which
is necessary to calculate the QBS lifetime: τi = ~/FWHMi .
Within this work, the determination of QBS is performed by the perfectly matched
layers formalism which is often used in electromagnetic theory. The idea is to add

B-33



non-physical absorbing layers at the boundary of the simulation region (physical
region). This procedure prevents reflection at the boundary of the physical region
in order to avoid the influence to the wavefunction in the physical region. This is
achieved by introducing the stretched coordinate x̃ =

∫ x

0
sx(τ) dτ which leads to

∂/∂x̃ = 1/sx(x)∂/∂x. Within the PML region, the stretching function sx(x) is given
as sx(x) = 1 + (α + ıβ)xn, with α = 1, β = 1.4, and n = 2, while it is unity in the
physical region. These artifical absorbing layers enable us to apply Dirichlet boundary
conditions and the QBS are determined by the eigenvalues of the non-Hermitian, but
still linear Hamiltonian of the system. The dimension of the system increases due to
the additional points in the PML region. The computational effort of the PML has
shown to be lower compared to QTBM. The PML formalism has been proven as an
elegant, efficient, and numerical stable method to determine QBS.
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