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Abstracts — The Wigner equation is well suited for numerical modeling of quantum electronic
devices. In this work, the stationary, position-dependent Wigner equation is considered. Carrier
scattering is described semi-classically by the Boltzmann collision operator. The development
of Monte Carlo algorithms is complicated by the fact that, as opposed to the semiclassical
case, the integral kernel is no longer positive semi-definite. Particle models are presented which
interpret the potential operator as a generation term of numerical particles of positive and
negative statistical weight. The problem arising from the avalanche of numerical particles is
thereby solved for the steady state. When constructing the algorithms particular emphasis has
been put on the conservation laws implied by the Wigner equation. If particles of opposite sign
are generated pairwise, charge is conserved exactly. If the free-flight time is reduced such that
only one particle is generated each time, then the sign of the particle weight is selected randomly,
and charge is conserved only on average.

1 Introduction

At room temperature the electrical characteristics of nanoelectronic and highly down-
scaled microelectronic devices are influenced simultaneously by classical and quantum
transport effects. A kinetic equation suitable for describing this mixed transport regime
is given by the Wigner equation. It can be formulated in a way to give the Boltzmann
equation in the classical limit. The Monte Carlo (MC) method is nowadays a well es-
tablished, reliable and accurate numerical method for solving the Boltzmann equation.
Because of the similarity of both equations it appears very promising to develop a MC
method also for the solution of the Wigner equation. Such approaches have been re-
ported recently [1][2][3][4]. The major problem to overcome is that the Wigner potential
does not represent a positive semi-definite function. This so-called negative sign problem
generally demands the introduction of particles of negative statistical weight.

2 The Quantum Transport Equation

The quantum transport model is based on the generalized Wigner equation describing one
electron interacting with a many-phonon system. Assuming the weak scattering limit, an
equilibrium phonon system, and the mean phonon number approximation gives a system
of three equations, which determines the reduced Wigner function and two auxiliary
functions [5]. This model still includes effects such as collisional broadening and the
intra-collisional field effect. To obtain a model more suitable for device simulation, the
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classical limit is introduced in the electron-phonon interaction, which results in a Wigner
equation with a Boltzmann scattering operator of the following form:
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In this equation f,, denotes the reduced electron Wigner function, Q[f,] the Boltzmann
scattering operator, and ©,,[f,] the Wigner potential operator. The latter is defined by
a convolution integral,

Oulfw](k,r,t) = /Vw(k -k r)fu K, r t)dk’ (2)

where the kernel is given by the Wigner potential defined as

Vw(q,r) = m/ (V(r+

The classical force field F(r) is introduced for convenience to obtain a Liouville operator
of a form compatible with the classical Boltzmann equation [2]. However, terms in (1)
and (3) related to the force field cancel each other, such that the choice of this field is
arbitrary and has no effect on the solution.

Because the Wigner potential assumes positive and negative values, it cannot be
directly used as a probability density. However, because of its antisymmetry with respect
to q the Wigner potential can be reformulated in terms of one positive function V" [4],

)= V(r—2)+s-F)exp(—iq-s)ds. (3)
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The Liouville operator in (1) is now expressed as a total time derivative over a classical
trajectory K(¢), R(t). Writing the operators on the right hand side explicitly gives
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The three characteristic rates in this equation are the semiclassical scattering rate, A(k) =
J S(k, k') dK’, a self-scattering rate to be determined later, a(k,r) > 0, and a rate associ-
ated with the Wigner potential, v(r) = [ V,F(q,r)dq. These rates are the normalization
factors needed to define the following conditional probability distributions:
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For the sake of brevity writing the r-dependence of these distributions is omitted. Defining

the kernel

rk|k') = %s(k|k’) + % 5(k' — k) + % [w(k|k") — w* (k|k")], (8)
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where = A + «, allows (6) to be written as
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Note that the Wigner equation conserves charge, as can be easily seen by integrating (1)
in k-space. A continuity equation without source term is obtained, because the integrals
of the scattering operator and the potential operator vanish, [ Q[f.,](k)dk = 0 and
J ©uwlfw](k)dk = 0. Consequently, also the kernel (8) conserves charge, [I'(k|k’)dk = 1.

The integral form of the Wigner equation is derived from (9) in the same way as the
integral form of the Boltzmann equation [6][7]. The propagation of particles in forward
time direction is governed by theh adjoint equation:

guw(k,r,t) = go(k,r,t)+
/ dr [ a9 (7). (7). 7) exp( / u(K(y))dy>r(k’|k>u<k>®D<r>. (10)

O p denotes the indicator function of the simulation domain D. The initial conditions for
the phase space trajectory are K(t) = k’, R(t) =r.

3 Particle Models

In analogy with the Boltzmann equation [6] each term of the Neumann series of (10) de-
scribes a sequence of consecutive free flight and scattering events. A transition consisting
of a free flight with initial state k; at time ¢;, and a scattering process to the final state
k; at time t7 is described by

Py, tylki, i) = Tk [Ki(tp) u(thf))exp( / ' u(Kde). (11)

7

In a MC simulation the time of the next scattering event, tf, is generated from an
exponential distribution. Then a transition from the trajectory end point K;(¢) to the
final state k¢ is realized using the kernel I'. In contrast to the classical case, P does not
represent a probability because I' is not positive semi-definite. In the following different
variants of generating the final state k; from the kernel I' will be discussed.

3.1 Instable Methods

A straightforward idea would be to use the absolute value of I' as a transition probability.
Practically it is more convenient to use the absolute values of the components of I, giving
a transition probability of the form

A
pliglk') = = s(ks[I) + = 3(ky — k) + L wller k) + L w (I [K), (12)

where the normalization factor is v = A + a + 2.
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Method I1: The free-light time is generated from the exponential distribution
appearing in (11),

ty
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For the sake of brevity the state at the end of the free flight is labeled k' = K; () in the
following. To generate the final state k, one of the four terms in (12) is selected with the
associated probabilities \/v, o /v, v/v, and «/v, respectively. Clearly, these probabilites
sum up to one. If classical scattering is selected, ky is generated from s. If self-scattering
is selected, the state does not change and it holds ky = k’. If the third or fourth term
are selected, the particle state is changed by scattering from the Wigner potential and
ky is selected from w or w*, respectively. The particle weight has to be multiplied by the

ratio
Tr 2y
—=4(1 14
. (UM)’ (14)

where the minus sign applies if ky has been generated from w*. For instance, for the
typical case of the classical scattering rate A being less than the Wigner scattering rate
~, the self-scattering rate a can be chosen such that A+ « = +. Then the multiplier (14)
evaluates to £3.

The drawback of this method is that the magnitude of the weight increases at each
scattering event by the multiplier (14). The growth rate of the weight can be estimated
for the case of constant coefficients v and p. Since free flight times are generated with
rate p, the mean free flight time will be 1/u. During a given time interval ¢ on average
n = ut scattering events will occur. The total weight is then estimated asymptotically
for ¢t > 1/p as:

W ()] = (1 + %)n _ (1 + %)n ~ exp(291) (15)

This expression shows that the growth rate is determined by the Wigner scattering rate
~ independently of the classical and the self-scattering rates.

Method I2: The same time-dependence of the particle weight is obtained for a
similar MC algorithm. Again the transition rate (12) is used, but now the free flight time
is generated with rate v and not with p. In this case (11) can be rewritten as

[l k) pu(k')
p(kslk’) v (k)

x I/(k’)exp< /t N V(Ki(T))dT> exp<2 /t tfy(Ri(T))dT) (16)

i i

Pky,trlki,t;) = p(ky|k’)

The exponential distribution and the distribution p are used to generate ty and ky,
respectively. The remaining terms form the factor, by which the particle weight changes
during one free flight. Because of (I')/(pr) = £1 the multiplier for the i-th free flight
evaluates to

mi = ieXp(Q /:“ W(Ri(f))dT) (17)
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The total weight after n free flights finally grows as a function of the whole path integral
over v(R(7)):
n—1 tn
W) = [Timd =ex(2 [ @®iar) (18)
i=0
This result generalizes (15) for a position-dependent v. The growth rate 2v is equal to
the L; norm of the Wigner potential.

Using these methods it has been demonstrated that tunneling can be treated numer-
ically by means of a particle model [3]. However, because of the exponentially increasing
particle weight at the very short time scale (2)~!, application of this algorithm turned
out to be restricted to single-barrier tunneling and small barrier heights only. The meth-
ods of this section can be useful for devices where quantum effects are weak, and the
potential operator is a small correction to the otherwise classical transport equation.

3.2 Pair Generation Methods

To solve the problem of increasing particle weight one can split the particle. In this way an
increase in particle weight is transformed to an increase in particle number. A stable MC
algorithm is constructed by adding a measure for removing numerical particles. Particles
of opposite sign and sufficiently small distance in phase space can be annihilated, allowing
the number of numerical particles to be kept below desired bounds.

The basic idea of splitting is refined so as to avoid fractional weights. Different
interpretations of the kernel are presented that conserve the magnitude of the particle
weight. Choosing the initial weight to be +1 all generated particles will have weight +1
or —1. This is achieved by interpreting the potential operator in (6) as a generation term
of positive and negative particles. We consider the kernel

NM&U=%%M&U+%&M—kU+%W&m&—w%M&ﬂ (19)

If the Wigner scattering rate ~ is larger than the classical scattering rate A, the self-
scattering rate o has to be chosen large enough to satisfy the inequality v/ < 1. Typical
choices are = Max (A, ) or u = A+~. These expressions also hold for the less interesting
case v < A, where quantum interference effects are less important than classical scattering
effects.

As in the classical MC method, the distribution of the free flight duration is given
by the exponential distribution (13). At the end of a free flight the complementary
probabilities ps = A/ and 1 — p, = «/p are considered. With probability p, classical
scattering is selected. The final state is generated from s. The complementary event
is self-scattering. In addition, with probability p,, = v/ a pair of particle states is
generated from the distributions w and w*. The multiplier of the weight is +1 for a state
generated from one of first three terms, and —1 for a state generated from w*. Therefore,
the magnitude of the initial particle weight is conserved.

Method G1: In the following we discuss the case v > A, where quantum effects are
dominant. We begin with the smallest possible value for p: p = Max(A,~) = . Because
pw = v/ = 1, a particle pair is generated after each free flight as shown in Fig. 1. At
the same instances classical or self-scattering events occur. In Fig. 1 and the following
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Figure 1: Trajectory of a sample particle resulting from Method G1.

figures only the trajectory of one sample particle is shown and not the whole cascade of
trajectories of the generated particles.

Method G2: Choosing the self-scattering rate to be a = v the kernel can be
regrouped as

I'(kflk') = gs(kﬂk’) +(1- %) (6(ky — k') +w(ks|K') — w* (ks |K)) (20)

With probability p, = A/p classical scattering is selected. Otherwise, a self-scattering
event and a pair generation event occur. In this algorithm classical scattering and pair
generation cannot occur at the same time, as shown in Fig. 2. Compared to Method G1,
the average free flight time is now reduced, because p has been increased from v to A+ 1.
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Figure 2: Trajectory of a sample particle resulting from Method G2.

3.3 Single Particle Generation Methods

The idea of this method is to further reduce the free flight time. We rewrite the kernel

as

A 2y |1 1
Dl ) = S s(heg ) + 2k =) + =2 | Swli ) = Ju(gli) | (21)

In this case the self-scattering rate a has to be chosen large enough to satisfy the inequality
2v/u < 1. Typical choices are yu = Max (A, 2v) and p = A+2v. As in Method G1 classical
scattering is selected with probability ps = A/u, whereas the the complementary event is
self-scattering. In addition, with probability p,, = 27v/p particle generation is selected.
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If selected, with equal probability either the distribution w or w* is chosen to generate
the final state ky. If w* has been chosen the weight is multiplied by —1.

Method G3: Assuming v > A/2 and u = 27 gives p,, = 1. Therefore, after each
free flight either a positive or negative particle is generated, as depicted in Fig. 3. At the
same instances classical or self-scattering events occur.
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Figure 3: Trajectory of a sample particle resulting from Method G3.

Note that in Method G3 (u = 2v) the free flight time is reduced by a factor two
compared to Method G1 (1 = «), which means that now the kernel is applied twice
as frequently. In Method G3 single particles are generated at a rate of 27, whereas in
Method G1 particle pairs are generated at half of this rate.

Method G4: In this method we set @ = 2y and obtain u = A 4+ 2+. In analogy with
Method G2 classical scattering and particle generation are now complementary events.
Fig. 4 indicates that these two types of events occur at different times. From all methods
discussed above this method uses the shortest free flight time.

From a numerical point of view Method G1 and Method G2 have the advantage
that they exactly conserve charge as they generate particles pairwise with opposite sign.
Method G3 and Method G4 generate only one particle each time. Because the sign of the
weight is selected randomly, charge is conserved only on average. Simulation experiments,
however, have shown that the quality of the pseudo random number generator is good
enough to generate almost equally many positive and negative particles even during long
simulation times, such that the small difference of net generated particles has no visible
effect on the solution.

+ H=A+2y

Figure 4: Trajectory of a sample particle resulting from Method G4.
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3.4 Other Methods

In Method G1 to Method G4 the weight of the generated particles is 1, because the
generation rate used equals 2v. If a generation rate larger than 2y or a fixed time-step
less than 1/2v were used, the magnitude of the generated weight would be less than
1. This approach has been followed in [1], where the resulting fractional weights are
termed affinities. On the other hand, a generation rate less than 2y would result in an
under-sampling of the physical process. The magnitude of the generated weights would
be generally larger than 1.

3.5 Particle Annihilation

The discussed particle models are instable, because either the particle weight or the
particle number grows exponentially in time. A stable MC algorithm can be obtained by
combining one of the particle generation methods with a method to control the particle
number. One can assume that two particles of opposite weight and a sufficiently small
distance in phase space annihilate each other. In an ensemble MC method a particle
removal step should be performed at given time steps. During the time step the ensemble
is allowed to grow to a certain limit, then particles are removed and the initial size of
the ensemble is restored. In this work the problem has been solved for the stationary
transport problem. In the algorithm the trajectory of only one sample particle is followed,
whereas other numerical particles are temporarily stored on a state space grid. Due to
the opposite sign, particle weights annihilate to a large extent in the cells of the grid.
The total residual weight in each cell has to be minimized, as it represents a measure for
the numerical error of the method [8].

4 Results

A resonant tunneling diode (RTD) has been studied. The characteristic parameters are
a barrier height of Ej, = 0.47eV, a barrier width of 3nm, and a well width of 4nm. The
Wigner potential V' (k,,z) is discretized using Ny = 1200 equidistant k, points and
Az = 0.5nm spacing in the z-direction. A coherence length of L, = 60nm is assumed.
The annihilation mesh consists of 480 points in the longitudinal and 120 points in the
perpendicular momentum direction, and the real space coordinate is disretized using
Az = 0.5 nm.

Fig. 5 shows the electron concentration profile in the device obtained using Method G2.
At the resonance voltage of 1.2V the concentration in the quantum well is considerably
higher than in the off-resonance condition at 1.6 V. The concentration in the depletion
region left of the barrier depends on the injected current and is thus correlated to the
concentration in the well.

Method G1 and Method G2 are equally well suited for this resonant tunneling struc-
ture. Method G3 and Method G4 can be used as well, however, in that case one has also
to assess the error due to the small imbalance of positive and negative particles generated.
Method I1 and Method I2 could not be used as they produce prohibitively large variance.
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Figure 5: Electron concentration profiles in a resonant tunneling diode.

Conclusion

The position-dependent Wigner equation has been used to model nanoelectronic devices.
The equation is transformed to an integral form and various forward estimators for the
solution of this equation are discussed. Six estimators are described in terms of particle
models, comprising transition probabilities and expressions for the particle weight. The
fact that the kernel can assume negative values leads to instable particle models. Two
of the presented models show exponentially increasing particle weights, and four models
exponentially increasing particle numbers. The growth rate in all these models is given by
the Ly norm of the Wigner potential, termed 2y = ['|V,,(q)|dq in this work. A stable MC
algorithm can be constructed by combining a particle generation model with a particle
annihilation method.
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