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Abstracts — The standard stochastic approach for simulation of carrier transport described by
the Wigner equation introduces hard computational requirements. Averaged values of physical
quantities are evaluated by means of numerical trajectories which accumulate statistical weight.
The weight can take large positive and negative values which introduce large variance of the
calculations. Aiming at variance reduction, we utilize the idea to split the weight so that a part is
assigned to the trajectory and a part is left on a phase space grid for future processing. Formally
this corresponds to a splitting of the kernel of the Wigner equation into two components. An
operator equation is derived which couples the two kernel components and gives an answer how
to further process the stored weight. The obtained Monte Carlo algorithm resembles a physical
process of generation or annihilation of positive and negative particles. Variance reduction is
achieved due to the partial annihilation of particles with opposite sign. Simulation results for a
resonant-tunneling diode are presented.

1 Introduction

As described by the Wigner equation, the transport in nanoelectronic devices consists of
coherent and dissipative parts. The coherent part accounts for the quantum interaction
of the carriers with the device potential. Processes of dissipation due to phonons are
treated as classical events via the Boltzmann collision operator.

We consider the case of stationary transport in one-dimensional devices. The four-
dimensional phase space (x, k) is composed by the real space coordinate = and the three-
dimensional space of wave vectors k = (kz, ky, k.). The device is bounded between two
contact points x; and x3. Open system boundary conditions are provided by classical
equilibrium functions fp(xp, k), b = 1,2 [1]. A physical average (A) is expressed via the
boundary conditions as follows:

o'} to
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K (zp) is the part of the wave vector space with inward directed x-velocities. z;(t) =
x;+ v, (k;)t, ki (t) = k; denote classical trajectories initialized by (z;, k;) at time 0, where
vg (k) = %km is the z component of the carrier velocity. The function g is the solution of
the adjoint integral form of the Wigner equation:

- ofu(r(y),k’)dy

g(z, k) = /dk'/dtf(a:,k',k)e 0p(z)g(z(t), k') + A(x, k) (2)
0
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Iz, k' k) = Sk,k)+7y(@)dk —k) (3)
+ (Vi (@, ke — k") = Vol (2, k" — ka)) 0(K,, — ky2)

S denotes the phonon scattering rate and A(k) = [ S(k,k’)dk’ is the total out-scattering
rate. V. is a positive function defined as V,J = max(V,,,0). The antisymmetric Wigner
potential V,, is defined by the device potential V (z):

Vi (2, k) = /dse-i’w% (V-2 -ve+) (@)
Finally
(k) = M) + () (@) = / Vi (@, ko) dhs (5)

The function + is interpreted as the out-scattering rate of the Wigner potential in strict
analogy with the phonon out-scattering rate A. The indicator of the device domain 0p(x)
is unity if 7 < x < z9 and zero otherwise.

(A) can be expanded into a series, which is convenient for application of the numerical
Monte Carlo (MC) theory. By following the same steps applied in the case of classical
transport ([2]), equation (2) can be formally written into a compact form as:

9(Q) = / IQKQ.Q)@Q) +AQ); Q= (K (6)

The solution is expanded into a Neumann series:
9@ = [dGQ- Q)+ > K"(QQNAWQ) = (I - K) 4,
n=1

where I is the identity operator and K™(Q,Q’") = [dQ:1K(Q,Q1)K" 1(Q1,Q") A re-

placement in (1) gives rise to a series which is written as inner product:

(4) = (0,(1 - K)~'4) (7)

2 Basic Monte Carlo Method

The consecutive terms of the series are evaluated by means of numerical trajectories.
Trajectories are constructed by using an initial density P(Q) and a transition density
PP(Q,Q). Each trajectory consists of an initial point Qg, selected by P, followed by
points Q)1 ...Q, selected by consecutive applications of the transition density PP. The
following quantity

_ b(QO) K(QO;Ql) K(anlaQn) It

= P(0o) PP(Q0, Q1) PP(Qura0n) (®)

estimates the n** term of (7). A, is a functional of A determined by the synchronous
ensemble or time-integration method ([3]). The initial density can be taken from the
classical single-particle MC algorithm: P = b/®, where ® > 0 is a normalization constant.
It is shown that trajectories which begin at a device boundary and end at a device
boundary provide independent realizations of the random variable associated to (A).
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That is, Y, ¢9) calculated on the j** trajectory is the j** sample value for (A). (4)
is evaluated by the sample mean. The term in front of A, in (8) is the accumulated
statistical weight. It depends on the choice of PP by the ratio w = K/PP, called weight
factor. In the case of Boltzmann transport PP can be chosen such that the weight factor
is always unity. This is not possible for the quantum case, where the accumulated weight
rapidly grows with the iteration number n.

The kernel K will be reformulated as a product of a transition density PP and a weight
factor w. PP is composed by conditional probability densities which are introduced by
following the order of their application.

D(z(t), k', k)
(k)

pe generates a value of ¢ associated with a free flight time of a particle which drifts over
a piece of a Newton trajectory between the initial state (z,k) at time 0 and the before-
scattering state (x(t), k). This state is used in the remaining term I'(x(¢), k", k) /u(x(t), k)
to select the value of k/,
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I'/u is interpreted as follows. According to (5) A/p and v/p are two complementary
probabilities, which determine the type of interaction. Classical scattering by phonons
occurs with a probability A/u. In this case the after-scattering state k’ is chosen with
probability density p,;,. The alternative interaction is due to the Wigner potential. It
is comprised of the three terms, enclosed in the brackets. ps has been introduced with
the purpose to select which one of the three densities py, p;, and ps generates the after-
scattering state (k, ky.).

The consecutive application of the described conditional probabilities generates a transi-
tion between (z,k) and (z(t),k’). The transition corresponds to one realization of PP.
The remaining term is the weight factor w = +1/ps = +3 where the minus sign applies
if p,, is selected.

Obviously only events of quantum interaction change the statistical weight. It can be
shown that the mean statistical weight is evaluated by of +e?™» where n,, is the mean
number of quantum interaction events per trajectory [4]. The argument of the exponent
depends on V,, and the length of the considered device. Their magnitudes in nanoelec-
tronic devices are such that the weight and thus the variance of the simulation results
become huge. This precludes the practical implementation of the method.

3 The Operator-Split Method

Particle splitting is an established approach [5] for statistical enhancement in classical
Monte Carlo simulations. A classical particle entering a rarely visited region of the
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phase space is split into sub-particles with corresponding fraction of the particle weight.
The sub-particles are consecutively removed by simulation of any particular sub-particle
trajectory until it exits from the device. The process continues until all stored particles
are removed.

This idea can not be applied directly in quantum simulations. The reason is in the
increase of the magnitude of the weight on quantum trajectories. Suppose a trajectory
which initiates from the boundary with a unit weight. The magnitude of the weight
increases so that a fraction of the weight is periodically stored in some points of the
phase space. The next step this primary weight is removed by trajectories which begin
from these phase space points. During this simulation step a secondary weight is stored
etc. The process can be infinitely continued: the stored weight cannot be removed from
the simulation domain. This problem is solved with the help of an integral equation based
on the splitting of the integral operator in (6). Two operators L = mK, M = (1 —m)K,
m < 1 are introduced, which obey the operator equality:

I-K)y'=(I-L)y'+(I-K)"'M{I-L)"* (10)

(10) is proved by multiplication by (I — L) and (I — K). Substituting (10) into (7) one
obtains the following expansion:

(A) = (b,(I-K)'A) = (b, M) (T - L)t A) (11)

k=0

Now we derive a MC algorithm which evaluates the consecutive terms in (11). For the
sake of simplicity we consider the coherent case, A = 0. A choice of m = 1/3 leads to
the convenient relations L = £PP and M = 2L. With the help of (8) the first term
(A); = (b, (I — L)tA) is evaluated by the sample mean

® j .
(A) > = sien(L(Qy”, QF) .- - sign(L(Q)1, Q) AP (12)
Jsn
where J is the number of the used trajectories. The second term (A); = (b, (I —

L)"'M(I — L)7'A) can be reformulated with the help of an operation of projection
in the phase space. Formally we use a delta function to introduce the auxiliary function
W1 which has a meaning of a weight stored in point @ of the phase space

Wi(Q) = (b, (I — L)' Ms)(Q).

This can be seen from the estimator of W7, which is obtained by replacing fl,({ ) in (12)

by 20(Q — Q,({)). Both Wp and (A); can be evaluated within a single computational
step. The second average (A)s is expressed as an inner product with the stored weight:
(A)g = (W1, (I — L)~*A). This term can be estimated by the sample mean computed by
using of J; trajectories:

(4) . ) . g
(A=Y %ggn@@gﬁ, D). sign(LQY), Q9IAY  (13)
> h @

The initial density P; for these trajectories can be conveniently selected as:

P@Q) = Wa(@)/IWall; - [[WAll =/|W1(Q)|dQ.
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If .J; is selected to be the nearest integer to ||W1|[, (13) simplifies to:

(A)g ~ Z sign(Wy( gj)))sign(L(ng), ng)) .. .sign(L(Qfljzl, QUNHAW) (14)
Jm

The term composed by the product of the sign factors in (12), (13) and the corresponding
estimator of W can be associated with a particle which has unit weight and a sign which
changes during the evolution. This picture can be maintained, if the pre-factor ®/J in
(12) is transferred to the left of the equation. Then the estimated quantities become
C(A)1, CWq and C(A)s where C' = J/®. Moreover CW7y, which determines the number
of trajectories J; becomes integer.

The steps for evaluation of the first two terms in (11) can be summarized as follows.
The stochastic process is described in terms of particles. A phase space mesh is intro-
duced, where the indicators of the mesh cells play the role of projection operators. An
estimator 7 and an array estimator v with components associated to the cells are initial-
ized to zero. During the first simulation step J positive particles are injected from the
boundary with probability P. They evolve over trajectories constructed by successive
realizations of PP until exiting the device. At each transition between points (z,k) and

(z(t),K)
- A, is computed, multiplied by the sign of the particle and added to 7;

- The sign s of the particle is changed, if k’ is generated from p;

- 25 is added to the value stored in that component of v, which corresponds to the
cell of (x(t),k’). We say that two particles with sign s are stored in that cell.

We note a very important property of this model. Particles in a given phase space point
have a common probabilistic future. This peculiarity can be approximately generalized
for sufficiently small phase space cells. Two particles with opposite signs, which initiate
their evolution from the same cell have opposite contributions to the estimators of the
averages. Such particles can be annihilated so that a cell can contain only particles with
a given sign. This step computes the quantities C{A); ~n and CW; ~ v.

An estimator 7; is introduced in the second step, which computes the value of C(A)s by
following the same scheme utilized for C(A);. The trajectories now start from the cells
and are simulated until their exit from the device. As it follows from (13), the number
of the trajectories which initiate from a given cell and the initial sign correspond to the
number and sign of the particles stored in that cell. An estimator v; can be computed in
the same way as v which corresponds to the particles stored at this step. It can be easily
shown that 1 evaluates the quantity CWs, where W5 is the stored weight for the third
term in (11):

Wa(Q) = (b, (I - L)™' M(I — L)™' M5)(Q)

(A)3 is obtained as an inner product with Wa: (A)3 = (Wa, (I — L)1 A). This term
resembles the expression for (A)s with W5 replacing W7. Then step two can be repeated
for the estimators 72 and vo which evaluate C{A)3 and the stored particles for the next
term in (11). An iterative algorithm is obtained, which computes the consecutive terms
of the series for C'(A4).

Aiming at optimization, we propose several modifications in the algorithm.
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Since C(A) is evaluated by > 7y, one estimator 7 is used in all steps.

The action of the Wigner potential can be interpreted in terms of particles as follows.
One of the three components of the transition density PP is selected to create three par-
ticles in the final phase space point. One of them continues the trajectory, the remaining
two are stored. In an alternative interpretation each kernel component can be used to
create a particle. Formally this corresponds to a replacement of ps in (9) with unity. Two
of the created particles carry the sign of the initial particle. The particle generated by
Dy, has the opposite sign. In this way three phase space cells are updated, which assists
the annihilation process. The trajectory is continued by a particle from that one of the
three cells, which contains the highest number of stored particles.

The constant ® can be evaluated by using of the fact that the number of electrons
N in given device domains is known. If § is the indicator of that domain, then (§) = N.
The quantity C(f) = B can be calculated during the simulation, which determines the
ratio C' = J/® = B/N. (A) is calculated by (A) ~nB/N.

The number of the injected boundary particles J must be chosen sufficiently large in
order to attain a reliable approximation of the first term in (11). The evaluation of all
remaining terms depends on this choice. Alternatively a moderate value of J can be used
in the following modification of the algorithm. Injection from the boundary alternates
injection from the phase space cells. Particles stored from a boundary injection are added
to the particles stored from the previous injection from the cells. After the R** bound-
ary injection, the stored weight approximates C ZkR:l Wi(Q), which can be proved by
induction. The subsequent step of injection from the cells completes the estimation of
the functional C Zg;rll(Aﬁc. We take the mean of these estimates at steps 0,1,..., R as
an approximation of the functional C(A). Since the functional C(A) is summed R — k
times and the ratios (R — k)/R tend to 1 as R tends to infinity, our estimate of C'(A) is
asymptotically correct. We call this algorithm QMC-I.

A second algorithm, called QMC-II, is based on the notion that injection of negative
particles from the boundary destroys the statistics obtained by the injected positive
particles. A careful selection of the ratio of the injected positive and negative particles,
along with the annihilation in the cells keeps the number of the stored particles low [6].
The steps of removing the stored particles can be ommited.

4 Simulation Experiments

A benchmark resonant-tunneling diode (RTD) has been chosen from the literature [7]
for simulation experiments. Simulation results obtained by the two MC algoritms and
by NEMO-1D based on non-equilibrium Green’s functions [6] are compared. A common
physical model is used for all simulations. The effective mass is uniform 0.067 and the
barrier height is 0.27eV. The barriers have a thickness of 2.825nm and the well has a
thickness of 4.52nm. The doping level in the contacts is 2 - 108cm ™3, linear potential
drop across the central device is assumed.

Fig. (1) compares the current-voltage characteristis of the RTD obtained by the three ap-
proaches. A typical (for stochastic methods) variance of the simulation results is demon-
strated for moderate simulation times. Convergence is achieved after a very long sim-
ulation presented for QMC-II algorithm. The agreement with the deterministic curve
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Figure 1: Current-Voltage characteristics Figure 2: Comparison of the electron con-
obtained by simulations with NEMO-1D, centrations obtained by simulations with
QMC-I and QMC-IL. QMC-I and QMC-II.

of NEMO-1D solver is good already for the results obtained with moderate simulation
times.

Fig. (2) shows the electron concentration in the central part of the simulated device as
obtained by the two MC algorithms. The chosen voltage values correspond to the peak
and valley points of the current-voltage characteristic. The corresponding results are in
excellent agreement.

5 Conclusions

The proposed Monte Carlo method has been successfully applied for realistic nanoelec-
tronic devices. Variance reduction has been achieved by annihilation of positive and neg-
ative particles into the phase space cells. The particle picture associated to the stochastic
process has been used to interpret and explain quantum transport phenomena in Wigner
representation.
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