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A Self-Consistent Event Biasing Scheme for Statistical Enhancement
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Abstract. The event biasing approach for statistical enhancement is generalized for self-consistent device simula-
tions, posed by mixed boundary and initial conditions transport problems. It is shown that the weight of the particles,
as obtained by biasing of the Boltzmann equation, survives between the successive steps of solving the Poisson
equation. Particular biasing techniques are applied to the simulation of a 15 nm MOSFET and the convergence of
the terminal and channel currents is analyzed.
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1. Introduction

Statistical enhancement aims at reduction of the time
necessary for computation of the desired device charac-
teristics. Enhancement algorithms are especially useful
when the device behavior is governed by rare events
in the transport process. Such events are inherent for
sub-threshold regime of device operation, simulations
of effects due to discrete dopant distribution as well as
tunneling phenomena. Virtually all Monte Carlo device
simulators with statistical enhancement use population
control techniques [1]. They are based on the heuristic
idea for splitting of the particles entering given phase
space region � of interest. The alternative idea—to en-
rich the statistic in � by biasing the probabilities associ-
ated with the transport of classical carriers—gives rise
to the event-biasing approach. The approach, first pro-
posed for the Ensemble Monte Carlo technique (time-
dependent problem) [2], has been recently extended for
the Single Particle Monte Carlo technique (stationary
problem) [3]. In the next section we introduce the ba-
sic steps of derivation of the approach in the presence
of both initial and boundary conditions. The linearity
of the transport problem is utilized, where Coulomb
forces between the carriers are initially neglected. The
generalization of the approach for Hartree carriers has
been found in the iterative procedure of coupling with
the Poisson equation. Self-consistent simulation results
are presented and discussed in the last section.

2. Event Biasing

The Ensemble Monte Carlo (EMC) technique is de-
signed to evaluate averaged values 〈A〉 of generic
physical quantities a such as carrier density and
velocity:

〈A〉(τ ) =
∫

d Q A(Q) f (Q) =
∫

d Q f0(Q)g(Q) (1)

Here Q = (k, r, t) defines the integration over the
phase space and time t ∈ (0, ∞), and A = aθ�δ(t −τ )
introduces the indicator θ� of the phase space do-
main, where the mean value is evaluated at time τ .
Equation (1) is the usual expression for a statistical
mean value, augmented by a time integral with the
purpose to be conveniently approached with the for-
mal theory of integral equations. It has been shown
that the Boltzmann equation can be formulated as a
Fredholm integral equation of a second kind with a
free term f0. The latter is determined by the initial
condition in evolution problems [2,4] or, in the case
of stationary transport, by the boundary conditions [3].
The second equality in (1) follows from the relation-
ship between an integral equation and its adjoint equa-
tion. It shows that the mean value 〈A〉 is determined
by f0 and by the solution of the adjoint Boltzmann
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equation:

g(Q′) =
∫

d QK (Q′, Q)g(Q) + A(Q′) (2)

K = S(k′, k, r)e− ∫ t
t ′ λ(K(y),R(y))dy

× θD(r)δ(r′ − r)θ (t − t ′) (3)

where S is the usual scattering rate from lattice im-
perfections, λ is the total out-scattering rate, θD is the
device domain indicator, which is discussed later, θ is
the Heaviside function and the trajectories, initialized
by k, r, t ′, are formulated with the help of the electrical
force F and the velocity v:

K(t) = k +
∫ t

t ′
F(R(y)) dy R(t) = r +

∫ t

t ′
v(K(y)) dy

If both initial fi and boundary fb conditions are taken
into account, it is shown that f0 becomes:

f0(Q) = fi (k, r)e− ∫ t
0 λ(K(y),R(y))dy

+
∫ t

0
v⊥(k) fb(k, r, tb)e− ∫ t

tb
λ(K(y),R(y))dydtb

(4)

While fi is defined only at the initial time t = 0, the
function fb is defined only at the device boundary �

and for values of k such that the corresponding velocity
inwards D. v⊥ is the velocity component normal to
� so that a velocity-weighted distribution drives the
particle flux, injected into the device at times tb ≤ t .
f0 in (4) governs both the transient and the stationary
behavior of a device. The latter is established in the
long time limit, provided that fb is time independent:
usually fb is assumed to be the equilibrium distribution
function.

A recursive replacement of Eq. (2) into itself gives
rise to the von-Neumann expansion, where the solution
g is presented as a sum of the consecutive iterations of
the kernel on A. If replaced in (1), the expansion gives
rise to the following series for 〈A〉.

〈A〉(τ ) =
∑

i

〈A〉i (τ ) (5)

Consider the second term in (5) 1 augmented with the
help of two probabilities P0 and P to become the ex-

pectation

〈A〉2 =
∫

d Q′d Q1d Q2 P0(Q′)P(Q′, Q1)P(Q1, Q2)

× f0(Q′)
P0(Q′)

K (Q′, Q1)

P(Q′, Q1)

K (Q1, Q2)

P(Q1, Q2)
A(Q2) (6)

value of a random variable (r.v.). It takes values deter-
mined by the second row with a probability given by
the product in the first row. 〈A〉2 is evaluated accord-
ing to the numerical Monte Carlo theory as follows. P0

and P are used to construct numerical trajectories: (i)
P0(Q′) selects the initial point Q′ of the trajectory. (ii)
P(Q′, Q) selects the next trajectory point Q provided
that Q′ is given. The fraction W2 in front of A, called
weight, is a product of weight factors f0

P0
, and K

P eval-
uated at the corresponding points Q0 → Q1 → Q2,
selected by application of P0 → P → P . The sample
mean of N realizations of the r.v., calculated over N
trajectories (Q′ → Q1 → Q2)n , estimates the mean
value 〈A〉2:

〈A〉2 = 1

N

N∑
n=1

(W2 A)n 〈A〉 = 1

N

N∑
n=1

(W A)n (7)

The iterative character of the multiple integral (6) has
been used to introduce a consecutive procedure for con-
struction of the trajectories. It can be shown that a sin-
gle trajectory, obtained by successive applications of
P , contributes to the estimators of all terms in (5) si-
multaneously; i.e. the procedure is generalized by the
second equation in (7) for a direct evaluation of 〈A〉.
Next we establish the link between (7) and the EMC
technique, which is due to particular choice of the
initial, P B

0 , and transition, P B , densities. P B , which
can be deduced from (3), is a product of the condi-
tional probabilities for free-flight and scattering, asso-
ciated with the evolution of the real carriers. The ratio
K/P B is then the domain indicator θD which takes
values 1 if the trajectory belongs to D and 0 other-
wise. The choice of P B

0 is complicated by the presence
of both initial and boundary terms in (4). They decom-
pose (7) into two terms which are evaluated separately:
〈A〉 = 1

N1

∑N1
n=1(W A)n + 1

N2

∑N2
n=1(W A)n The initial

probability P B
0 for each estimator is obtained from fi

and v⊥ fb respectively, with the help of two normaliza-
tion factors: the number of initial carriers Ni and the to-
tal number NJ of the injected into the device particles.
The ratio f0/P B

0 for each of the estimators becomes
Ni and NJ respectively, and can be eliminated by the
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choice N1 = Ni and N2 = NJ . The two sums can be
merged back to give

〈A〉 =
Ni +NJ∑

n=1

(W A)n =
Nτ∑

n=1

θ�(n)an (8)

(8) accounts that only trajectories which belong to D
give contributions. As only the endpoint of such trajec-
tories matters for the estimator, we speak about parti-
cles inside the device. Nτ is the number of such particles
at time τ , and θ�(n) is 1 or 0 if the n-th particle is inside
or outside �. All particles have weight unity and evolve
as real Boltzmann carriers: the EMC technique for
transport problems posed by initial and boundary con-
ditions is recovered. A choice of alternative probabili-
ties is called event biasing. The probabilities for initial
and/or boundary distributions, free flight duration, type
of scattering and the selection of the after-scattering
state direction can be biased. It can be shown that (8)
is generalized to 〈A〉 = ∑N b

τ

n=1 Wnθ�(n)an where the
position of the N b

τ biased particles is accounted in θ�.
The Boltzmann equation for Coulomb carriers

becomes nonlinear via the interaction component
F( f )(r, t) of the electric force. As the results of the
previous section are based on the linearity of the inte-
gral equations involved, it is no longer possible to apply
the steps used to derive the event biasing. The solution
is sought in the iterative procedure of coupling of the
EMC technique with the Poisson equation: the latter is
discretized by a decomposition of the device region into
mesh cells �l . The particle system is evolved in time
intervals �t 	 0.1 f s. At the end of each time step, at
say time τ , the charge density qC(rl , τ ) is calculated
and assigned to the corresponding grid points. We use
the relation between Cl and the distribution function
fl,m = f (rl , km, τ ), which is estimated with the help
of (8) by introducing a mesh 	m in the wave vector
space, (�l,m = �l	m):

fl,m =
∑

n θ�l,m (n)

V�l V	m

Cl =
∑

m

fl,m V	m Nτ =
∑

l

Cl V�l

The charge density Cl is used to find the solution of
the Poisson equation, which provides an update for the
electric force F(r, τ ). The latter governs the trajectories
evolving the particles in the next time interval τ, τ+�t .
Between the steps of solving the Poisson equation the
electric field is frozen so that event biasing can be ap-
plied. Assume that at time τ the particles emerge with
weights Wn . Due to the event biasing the behavior of the

biased particles differs from that of the EMC particles.
The distribution function of the biased particles f num

l,m
obtained from the above formula is entirely different
from fl,m . Nevertheless, as seen from (6), any biasing
does not change the values of the physical averages.
The Boltzmann distribution function is recovered by
using the weights Wn: fl,m = ∑

n Wnθ�l,m (n)/V�l V	m

Accordingly the correct F is provided by the Poisson
equation. As the evolution is Markovian, fl,m presents
the initial condition for the next time step. Numeri-
cal particles, having distribution f num

l,m and weights Wn

present a biased initial condition for this step: the initial
weight will be updated in the time interval τ, τ + �t
by the weight factors according the chosen biased evo-
lution. It follows that, the particle weights survive be-
tween the successive iteration steps, which completes
the proof of the self-consistent biasing scheme.

3. Simulation Results

The MOSFET device chosen for the simulation experi-
ments has gate length is 15 nm, channel doping 2×1019

cm−3, and oxide thickness 0.8 nm. A similar device has
already been fabricated by Intel [5].

The applied potentials VG = 0.375 V, VD = 0.1 V
correspond to a sub-threshold regime, where the chan-
nel carrier density is three orders of magnitude less
than the density in the S/D regions. The lattice temper-
ature is T = 300 K. The chosen biasing techniques aim
at increasing the number of numerical particles in the
channel, but keep the total particle number in the device
equal to 105, as used in the EMC technique. Particles
which enrich the high energy domain of the distribu-
tion at the expense of obtaining weights W < 1 readily
overcome the source potential barrier. The number of
particles in the low energy domain is reduced, such
particles have weights W > 1 and remain longer in
the S/D regions. An alternative approach, which biases
the scattering angle of the Coulomb interaction in or-
der to create a flux of numerical particles towards the
channel is currently under consideration. We first in-
vestigate the consistency of the biasing techniques in
the thermodynamic limit of a very large number of sim-
ulated particles. Both Boltzmann and biased stochastic
processes must give the same evolution of the physical
averages. Indeed, the simulated physical characteris-
tics, such as carrier, velocity and energy profiles, and
in particular the electric field in X and Y directions,
coincide with the results from the EMC approach at a
given τ . Second for smaller particle number we seek
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Figure 1. Comparison of the channel currents from biased e-a rates,
boundary distribution (T = 450 K) and the EMC.

bias processes with smaller variance as compared to the
EMC technique. The convergence of the cumulative av-
erages for the channel and terminal currents (obtained
from the velocity and particle counting respectively) is
investigated.We first bias the phonon scattering by in-
creasing the absorption and reducing the emission rates
(e-a) in the half of the source region near the barrier in
a 4 nm depth. Figure 1 (top) shows the biased chan-
nel current as compared to the EMC result for 30 ps
evolution time. The 5% error region (straight lines)
around the mean value is entered 2.5 ps earlier and
the convergence is better. The second technique biases
the boundary conditions by injection of particles with
higher temperature T = 450 K (Fig. 1 bottom). The
temperature-biased curve shows superior behavior.The
corresponding terminal currents are much more noisy
and show long time correlations due to the inter-particle
interactions. The e-a biased curve is very unstable and
enters the 5% error region in Fig. 2, top, after 15 ps evo-
lution. We associate this behavior with the numerical
error: the poor statistics are due to the appearance of
very heavy (W > 2) particles in the source. To check
this it is sufficient to apply the conventional particle
splitting along with the e-a biasing. The result is pre-
sented by the dotted curve on the plot. The behavior is
significantly improved at the expense of a 30% increase
in the number of simulated particles. The terminal cur-
rent corresponding to the biasing of the temperature of
the injected particles again shows a superior behavior.
This is due to an improved weight control: the weight
determined during the injection remains constant in the
evolution. Its maximal value for T = 450 K is 1.5. Fur-
thermore the probability for interaction with the impu-

Figure 2. Terminal currents obtained by particle counting.

rities, which dominates the S/D regions, drops for the
majority of the particles due to their high energies. The
conventional splitting technique cannot achieve such
superiority. Experiments where the boundary particles
at T = 300 K are split into sub-particles with weight
C1 < 1 above a given energy threshold ε1 have been
performed. In order to maintain the same total num-
ber of simulated particles (105), the weight below ε1

becomes C2(C1, ε1) > 1. The best result obtained by
varying ε1 and C1 is shown by the dotted curve on
Fig. 2. The behavior of the curve resembles the EMC
counterpart. An improvement is expected if the C2 par-
ticles are split, which recovers the conventional split
technique.

In conclusion, the event biasing approach has been
derived in the presence of both initial and boundary
conditions and generalized for self-consistent simula-
tions. The approach is confirmed by the simulations
presented. A bias technique, particularly useful for
small devices, is obtained by injection of hot carriers
from the boundaries. The coupling with the Poisson
equation requires precise statistics in the S/D regions.
It is shown that a combination of event biasing and
population control approaches is advantageous for this
purpose. We note that estimates for the variance and
covariance can be introduced to measure the conver-
gence [3].

Note

1. The δ function in each K takes away a spatial integral, while
δ ∈ A sets the time t2 ∈ Q2 equal to the evaluation time τ .
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