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Abstract. An overview of models for the simulation of current transport in micro- and nanoelectronic devices
within the framework of TCAD applications is presented. Starting from macroscopic transport models, currently
discussed enhancements are specifically addressed. This comprises the inclusion of higher-order moments into
the transport models, the incorporation of quantum correction and tunneling models up to dedicated quantum-
mechanical simulators, and mixed approaches which are able to account for both, quantum interference and scatter-
ing. Specific TCAD requirements are discussed from an engineer’s perspective and an outlook on future research

directions is given.
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1. Introduction

The continuous minimum feature size reduction of mi-
croelectronic devices, institutionalized by the ITRS
roadmap [1], has been partly enabled by the support of
sophisticated Technology CAD (TCAD) tools. These
tools promise to assist process and device engineers
during all stages of development, ranging from pro-
cess simulation to device and circuit simulation. Today,
device engineers face the challenge to move from the
microelectronic feature scale in the mid-90’s, with typ-
ical MOSFET gate lengths just entering the sub-micron
region, to the realm of nanoelectronics with 90 nm gate
length devices in production and 6 nm gate length tran-
sistors fabricated in research labs [2]. The continuum
approximation, already questioned in the mid-1990’s,
has to be abandoned in this regime, and different ap-
proaches for the simulation of devices in the nanometer
regime have been proposed.

In general, the inaccuracies of presently applied
semiclassical macroscopic transport models are due
to non-local effects [3], either caused by classical
or quantum-mechanical non-localities. Classical non-
localities arise because the distribution of electrons in
very small devices does not depend on local quantities

alone. Quantum-mechanical non-localities occur due
to the wave nature of electrons and the occurrence of
quantization, either due to high electric fields as in the
inversion layer of a MOSFET, or due to the geometry
as in ultrasmall double-gate or FinFET devices.
Figure 1 depicts the hierarchy of models which are
currently used for the description of current transport.
Semiclassical transport models rely on classical states
characterized by a distribution function which is gov-
erned by the Boltzmann transport equation. In Section 2
we will give a review of the evolution of semiclassical
transport models, and describe recent results with re-
gard to higher-order transport models. Quantum ballis-
tic transport is based on pure states described by a wave
function, the evolution of which follows Schrodinger’s
equation. These approaches are mainly used for the
simulation of closed systems, such as quantum correc-
tions in the inversion layer of MOSFETs. In Section 3,
these quantum-ballistic transport approaches will be
described. Finally, quantum transport theory deals with
mixed states. There exist different formulations, which
can be based on the Dyson equation, the Liouville/von
Neumann equation, or the Wigner transport equation.
Section 4 deals with quantum transport characterized
by both scattering and quantization. A conclusion will
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Figure 1. Hierarchy of transport equations in semiconductor current transport modeling.

summarize the main findings and give directions for
future research.

2. Semiclassical Transport

In the early days of semiconductor technology, the
electrical characteristics of semiconductor devices
could be estimated based on simple analytic compact
models, employing a variety of simplifying approx-
imations but capturing the basic physical principles
of carrier transport. These models were based on the
drift-diffusion (DD) formalism, where the current
in the device is governed by the electric field and
the concentration gradients alone. Based on the
ground-breaking work of Scharfetter and Gummel [4],
who first proposed a robust discretization scheme for
the drift-diffusion equations, the numerical simulation
of semiconductor devices was enabled. Computer
programs such as Minimos [5] and Pisces [6] have been
developed and played a pioneering role in the deeper
understanding of current transport for engineering pur-
poses and in the development of miniaturized devices.
For the first time, it was possible to provide insight
into the functioning of semiconductor devices by
means of the distribution of internal device quantities,
instead of global quantities such as current-voltage
characteristics. Since then, numerous transport models
of increasing complexity have been proposed. All
models are coupled to the POISSON equation

V- Vo) =p@), p@)=qn—-—p—-C) (1)

where ¢ denotes the electrostatic potential and « the di-
electric permittivity. The question of current transport
basically reduces to the self-consistent modeling of the
non-linear charge density p(¢) in (1), which includes

the electron and hole concentration, the net concentra-
tion of impurities, and other charges such as ionized
traps.

Neglecting the quantum-mechanical nature of elec-
trons, carrier transport in a device is described by
Boltzmann’s transport equation, a seven-dimensional
integro-differential equation in phase space [7]

of qE (¥
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Here, f(r, k, t) is the distribution of carriers in space
(r), momentum (%K), and time. On the right-hand side
stands the collision operator which describes scattering
of particles due to phonons, impurities, interfaces, or
other scattering sources. However, for realistic struc-
tures, the direct solution of this equation is computa-
tionally prohibitive. It is rather solved by approximate
means applying the method of moments or using Monte
Carlo methods. In the method of moments each term
of (2) is multiplied with a weight function and inte-
grated over k-space. This yields a set of differential
equations in the (r, ¢)-space. The moments of the dis-
tribution function are defined as

(@) = 1 ® f(r,k, t)d’k. 3)
473

This generates an infinite set of equations which must

be closed by a suitably chosen ansatz. Closure after the

second moment and assuming a cold Maxwellian dis-

tribution leads to the drift-diffusion equations, which

for electrons read

on
V~Jn=61R+q¥, “
J. = qn/anE"'_anvn- )]



Evolution of Current Transport Models for Engineering Applications 151

In these equations J,, denotes the current density, R
the net recombination rate, i, the mobility, E the elec-
tric field, and D, the diffusion coefficient. Together
with (1), a coupled equation system is formed which
is solved numerically by means of the box integra-
tion method. From an engineering point of view, this
model has proven amazingly successful due to its ef-
ficiency, numerical robustness, and the feasibility to
perform two- and three-dimensional studies on fairly
large unstructured grids. However, several shortcom-
ings of this model are critical for miniaturized devices.
Especially hot-carrier effects such as impact ioniza-
tion or velocity overshoot motivated the development
of higher-order transport models such as the hydrody-
namic, energy-transport, and six-moments model [8].
These models allow the electron energy distribution
function to be described beyond the Maxwellian ap-
proximation, and they are used routinely in commer-
cial and academic device simulators. As a calibra-
tion tool, the full-band Monte Carlo method has be-
come accepted, since it can precisely account for the
various scattering processes in the scattering opera-
tor [9]. Figure 2 shows a comparison of different macro-
scopic simulation approaches with full-band Monte
Carlo results for a 250 nm and a 50nm double-gate
MOSFET [10]. It can be seen that transport models
based on two, four, and six moments deliver sim-
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Figure 2. Comparison of macroscopic transport models with full-
band Monte Carlo [10]. While all models yield similar results at
large gate lengths, only the six-moments model reproduces the short-
channel Monte Carlo results.

ilar results for the long-channel device, while only
the six moments model is able to reproduce the full-
band Monte Carlo results for the short-channel de-
vice.

3. Quantum-Ballistic Transport

Within the macroscopic transport models presented
above, quantum-mechanical effects are usually ac-
counted for by means of quantum corrections in the
continuity equations. However, the fabrication of struc-
tures in the nanometer regime triggered the develop-
ment of quantum-mechanical modeling tools. This be-
came especially important for the evaluation of gate
dielectrics, which represent the smallest feature scale
in microelectronics. Neglecting quantum confinement
in this regime leads to results which are not just slightly
inaccurate, but systematically wrong. As an example,
the CV-characteristics of an 1.5 nm dielectric layer is
shown in Fig. 3 for different poly doping concentra-
tions calculated classically and quantum-mechanically
and showing a large discrepancy under inversion con-
ditions. This apparent inaccuracy of conventional mod-
els justified the development of one-dimensional quan-
tum device simulators which are today established
tools for the characterization of gate dielectric lay-
ers [11-13]. Such one-dimensional solutions of the
Schrodinger equation are also frequently used to de-
rive correction factors for the carrier concentration
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Figure 3. Comparison of CV characteristics of a 1.5 nm dielectric
layer with different polysilicon doping applying one-dimensional
classical and quantum-mechanical simulations.
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calculated by macroscopic transport models [14—16].
They can be used to yield a quick estimate of quantum-
confinement related effects without degrading the ef-
ficiency of the device simulator used. However, based
on the closed-boundary Schrédinger equation charge
transport is neglected.

Regarding quantum-mechanical current transport,
quantum-ballistic models are predominantly applied
for the simulation of gate leakage caused by tunneling.
Here, the central quantity is the transmission coeffi-
cient TC(€) which is used in the so-called Tsu-Esaki
equation

Eman
J= 4”’:7;“" / TCEINE)AE,  (6)
Emin

to calculate the tunneling current density. Methods such
as the Wentzel-Kramers-Brillouin (WKB), the transfer-
matrix, or quantum transmitting boundary method have
been proposed to calculate the transmission coeffi-
cient [17]. The resulting tunneling currents can be
easily incorporated into macroscopic transport mod-
els by means of additional generation/recombination
processes in (4).

However, the further reduction of channel lengths
raises the question for a fully quantum-mechanical
treatment of carrier transport. This makes the solu-
tion of Schrodinger’s equation with open boundary
conditions necessary, which can be done by means of
the quantum transmitting boundary method as shown
in [18,19]. An established and sophisticated frame-
work for these calculations is the non-equilibrium
Green’s Function method, which is predominantly
used for one-dimensional studies of resonant tunnel-
ing diodes [20]. Two- and three-dimensional quan-
tum ballistic simulations can be performed by means
of an adiabatic decomposition of wave functions into
one or two confinement directions [21,22]. Recently,
simulators accounting for a full two-dimensional solu-
tion of the open-boundary Schrédinger equation have
been reported and applied to the simulation of 10 nm
double-gate MOSFETs [23,24]. Besides the require-
ment for a fine and sometimes even equidistant mesh,
a main obstacle in these approaches is that the treat-
ment of scattering is not straightforwardly possible.
Furthermore, these simulators are usually limited to
specific geometries, restrictive grids, or small length
scales, which makes their usability for engineering
applications questionable. Nevertheless, these simu-
lation approaches are necessary for the estimation

of upper bounds of current transport at the quantum
limit.

4. Quantum Transport

The methods described so far are either based on the
assumption of pure classical or pure quantum transport.
Modern microelectronic devices, however, are charac-
terized by the transition between large reservoirs with
strong carrier scattering, and small regions where quan-
tum effects are important or even dominate. To first or-
der, quantum correction models can account for these
effects. A more rigorous approach is to consider models
derived from the Wigner equation. The Wigner func-
tion is given by a transformation of the density ma-
trix [25,26]

S s
fulr, Kk, t) = /p(r + > r— > t) exp(—ik - s)ds.
The kinetic equation for the Wigner function is the
Wigner transport equation which is similar to the Boltz-
mann equation except the Wigner potential at the right-
hand side
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The Wigner potential is defined by

1 S
Valr, k) = mf <V<” 5)

- V(r - %)) exp(—ik -s)ds. (8)

From this equation the quantum drift-diffusion or
quantum hydrodynamic models can be derived apply-
ing the method of moments [27]. It is therefore more
suitable for the implementation in device simulators
than a Schrodinger-POISSON solver which strongly de-
pends on non-local quantities. However, it was reported
that, while the carrier concentration in the inversion
layer of a MOSFET can be modeled correctly, the
method fails to reproduce tunneling currents [28].

Therefore, strong efforts have been undertaken to
couple the most accurate classical device simulation
approach, the Monte Carlo technique, with quantum-
mechanical formulations [29-31]. One possibility is
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to use an effective potential instead of the solution
of POISSON’s equation in the Monte Carlo simula-
tion [32,33]. That can be achieved by a convolu-
tion of the electrostatic potential with a GAUSSian
function which leads to a smoothing of the original
potential.

A less heuristic approach is to solve the WIGNER
transport Eq. (7) by means of Monte Carlo techniques.
Unlike classical distribution functions, however, the
WIGNER function permits positive and negative val-
ues. Therefore, it cannot be interpreted as a probabil-
ity distribution function, a peculiarity known as the
negative sign problem. Instead, the Wigner function
can be modeled as the difference of two positive func-
tions which describe in-scattering and out-scattering
of particles. This approach has the advantage that it al-
lows for a seamless transition between classical and
quantum-mechanical regions in a device [31]. This
method has been applied to the simulation of reso-
nant tunneling diodes as shown in Fig. 4 and it was
recently used for the simulation of 10 nm double-gate
MOSFETs [34].

A typical application of quantum transport inter-
esting for device engineers is shown in Fig. 5, de-
picting a cross-section through the channel of dif-
ferent multi-gate silicon-on-insulator devices, namely
a FinFET (top) and a Il-gate FET (bottom) [35].
Three-dimensional device simulations have been per-
formed for turned-off devices (Vps= 1.0 V, Vgs=
0.0 V) by means of coupling a two-dimensional
Schrodinger-Poisson solver to the device simulator
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Figure 4. Wigner Monte Carlo results of electron concentration
and mean energy for a resonant tunneling diode [31].
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Figure 5. Carrier concentration in the middle of the channel of a
turned-off triple-gate FinFET (top) and a I1-FET [35] (bottom). The
I[1-gate efficiently suppresses the spurious drain field.

MINIMOS-NT [36], and the figures show the result-
ing carrier concentrations. While only the gate-all-
around structure can fully deplete the channel, the IT-
gate FET efficiently shields the channel from the drain
bias, while posing only moderate additional process
complexity.

5. Conclusions

Semiconductor physics is a vast field and simulation
approaches abound. Physicists are often tempted to use
overly complicated approaches, in an understandable
effort not to lose the important physics. However, some
constraints for engineering application should be kept
in mind. Models must be efficient: Timely results are
more valuable than accurate analyses [37]. There is a
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need for three-dimensional simulations, even if they
are only rarely applied to check for spurious effects.
Device simulators must allow a coupling with process
simulators, since a detailed, physics-based transport
model is of no use if geometry and doping are not
described correctly. Therefore, support of unstructured
grids is necessary. Furthermore, the simulators should
be general-purpose and not limited to specific geome-
tries or simulation modes. It is still not clear which of
the outlined quantum transport approaches will find its
way into integrated TCAD environments, but its further
success depends on efficient and accurate modeling of
these new effects.
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