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1. INTRODUCTION 
Modeling of electronic transport in mesoscopic Systems requires a theory that describes open, 
quantum-statistical Systems driven far from thermodynamic equilibrium. Several formu-
lations of quantum transport have been employed practically, such as those based on the 
density matrix, nonequilibrium Green's functions, and the Wigner function. 
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A quantum-mechanical phase-space distribution was introduced by Eugene Wigner in 
1932 [I]. The purpose was the formulation of a quantum correction for the thermodynamic 
equilibrium of a many-body system by means of a quasiprobability function. In more recent 
times, the definition of the Wigner function has been generalized as a Fourier transform of 
a many-body Green's function 121. 

The Wigner function is a real-valued but not necessarily positive definite quasidistribu- 
tion and represents a quantum generalization of Boltzmann's N-particle distribution. The 
Wigner function formalism is attractive as it allows the expression of quantum dynamics in 
a phase-space formulation, directly comparable with the classical analogue. A phase-space 
approach may appear more intuitive compared with the more abstract density matrix and 
Green's function approaches. The method of quasidistributions has proved especially useful 
in providing reductions to classical physics and kinetic regimes under suitable conditions. 

To discuss the physical interpretation of a quasidistribution, let us consider the simple 
case of a one-particle distribution. Starting with the classical case, the distribution f,,(p, r ,  t) 
is proportional to the probability density of finding a particle of momentum p and position 
r in the phase-space volume d3p d3r. This is a purely classical interpretation, directly con- 
flicting with the uncertainty principle. The quantum mechanical quasidistribution fw(p, r ,  t), 
however, is not positive definite and has to be interpreted as a joint density of p and 
r [3]. Only the marginal distributions are positive definite, that is, integrating fw(p, r ,  t )  over 
momentum space gives the probability density in r-space, and vice versa. 

An excellent review of quantum-mechanical phase-space distributions in scattering theory 
has been given by Carruthers and Zachariason [4]. This work deals with potential scattering, 
the two-body problem, and the N-body problem. A coupled hierarchy for reduced distribu- 
tion functions and its truncation to the Boltzmann-Vlasov equation is presented. Tatarskii [3] 
concentrates on quantum-mechanical systems in a pure state and investigates the represen- 
tation of quantum mechanics by phase-space distributions. He points out that not every 
function that solves the Wigner equaiion describes a pure state. Therefore, initial condi- 
tions for the Wigner equation have to be subjected to a supplementary restriction. Today, 
phase-space quantization is considered to be a third autonomous and logically con~plete for- 
mulation of quantum mechanics beyond the conventional ones based on operators in Hilbert 
space or path integrals [5, 61. This formulation is free of operators and wave functions. 
Observables and matrix elements are con~puted through phase-space integrals of c-number 
functions weighted by a Wigner function. 

Important quantum mechanical properties of electronic transport in semiconductor struc- 
tures are often those associated not with the degeneracy of the Fermi system but rather with 
quantum interference effects 171. A wide variety of electronic quantum transport problems 
of interest are essentially one-particle in nature. In such cases, a full many-body description 
of the problem is not necessary, and a description of electronic transport that makes use of 
the one-particle approximation can be used from the very outset. However, even when the 
electron-electron interaction effects are of interest, certain approximations do exist, allowing 
their description on a one-particle level 171. Therefore, we shall consider in the following 
only electronic systems with one-particle degrees of freedom. 

1.1. History and State of the Art Review 

Reports on finite-difference solutions of the one-particle Wigner equation for device applica- 
tions are due to Ravaioli [8], Kluksdahl 191, and coworkers, and date back to the mid 1980s. 
Frensley [lo-121 was the first who introduced boundary conditions on the Wigner function 
to model open quantum systems. Later, self-consistency was added to the Wigner equation 
solvers 113, 141. Main and Haddad included a reduced Boltzmann scattering operator in tran- 
sient Wigner function-based simulations [15]. Research on finite-difference solution methods 
for the Wigner equation culminated in 1990 when the review articles of Frensley [16] and 
Buot and Jensen [17] appeared. 

The 1990s have seen further extensions and applications of the finite-difference Wigner 
function method. High-frequency operation of resonant tunneling diodes has been studied 
by Jensen and Buot 118, 191, and the transient response by Gullapalli [20] and Biegel 1211, 
and later by 1221. A new finite-difference discretization scheme has been proposed in [23]. 
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In 2002, implementations of Monte Carlo methods for solving the Wigner device equation 
were reported [24, 25]. Although with the finite-difference method, scattering was restricted 
to the relaxation time approximation and the momentum Space to one dimension, the Monte 
Carlo method allows scattering processes to be included on a more detailed level, assuming 
a three-dimensional momentum-space [26, 27]. Issues such as choosing proper up-winding 
schemes, restrictions on matrix size and momentum space resolution are largely relaxed 
or do not exist when using the Monte Carlo method. Construction of new Monte Carlo 
algorithms is complicated by the fact that the kernel of the integral equation to solve is not 
positive semidefinite. As a consequence, the commonly applied Markov chain Monte Carlo 
method shows a variance exponentially increasing with time, prohibiting its application to 
realistic structures or larger evolution times [25, 28, 29]. Because of this so-called negative 
sign problem, the concept of Wigner paths alone [30, 31] is not sufficient to construct a stable 
Monte Carlo algorithm. Instead, additional measures have to be introduced that prevent a 
runaway of the particle weights and hence of the variance [26, 32]. Note that in [26], the 
Statistical weights are termed affinities. 

Large basic research efforts on the Monte Carlo modeling of electron-phonon interaction 
based on the Wigner function formalism have been reported in [28, 31, 33-35]. 

The effect of a spatially varying effective mass in Wigner device simulations has been 
demonstrated in [36] and [37]. A nonparabolic version of the Wigner equation has been 
derived by Bufler [38]. Multiband modeis have been reported in [39-41]. 

A Wigner equation including a magnetic field has been solved in [42]. The gauge-invariant 
formulation of the Wigner equation has been given by Levinson [43], and a discussion can 
be found in various works [4, 44-47]. Two-time and frequency-dependent Wigner functions 
are considered in [2, 47-49]. 

Finally, we note that the Wigner function formalism is often used to derive reduced trans-
port modeis, such as the quantum hydrodynamic model [50, 51-53], or to find quantum 
corrections to classical modeis, such as the ensemble Monte Carlo method [54] or the spher-
ical harmonics expansion method [55, 56]. 

2. THE WIGNER FUNCTION FORMALISM 
In the Schrödinger picture, a physical System is quantum-mechanically described by a State 
vector | ^ ( 0 ) a s function of time t. Often, the precise quantum-mechanical State of a 
System is not known, but rather some Statistical Information about the probabilities 
for the System being in one of a set of states. Suppose that there is a set of ortho-normal 
states ( l ^ i ) , \%), • • • }> a n d that the probabilities that thejsystem is in one of these states 
are {pl9 p2,... }. Then, the expectation value of Operator A associated with the observable 
A is given by 

<A> = I><^|Ä|<Pi> (1) 
i 

which is a quantum and Statistical average. Introducing the density Operator ß as 

ß = T,Pi\%)(%\ (2) 

the expectation value becomes 

(A) = Tr(pÄ) = MU) (3) 

Formulations (1) and (3) require the Operator A to be self-adjoint. Equation (3) can be 
easily verified by expressing the trace of some Operator X in the basis {|M/i)}. 

Tr<X) = £<* , . |X | ^> (4) 

The fact that the probabilities sum up to unity, J2i Pt = h *s expressed by the fact that the 
trace of the density Operator is also unity, Tr(p) = 1. If the System is in a pure State |^-) it 
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holds p, = 1 and pj = 0 V j # i, and the density operator is idem-potent, b2 = b. Otherwise, 
the system is in a mixed state, and fi does not obey the idem-potency condition. From the 
Schrodinger equation for the state vector and the definition of fi, we immediately obtain the 
Liouville-von Neumann equation for the evolution of the density operator. 

Introducing the one-particle approximation [7] implies that the electron system is modeled 
as consisting of many, noninteracting electrons. In the next step, one chooses the coordinate 
representation, where the set of basis vectors is given by the electron position eigenstates Ir). 
The eigenstates of the system are then represented by the wavefunctions q i ( r ,  t) = (rIqi(t)),  
and the density operator by the density matrix p(r,, r2, t). 

The Liouville-von Neumann equation in coordinate representation is found as 

2.1. The Wigner Function 

The Wigner function is obtained from the density matrix by means of the Wigner-Weyl trans- 
formation. This transformation consists of a change of independent coordinates to diagonal 
and cross-diagonal coordinates 

followed by a Fourier transformation with respect to s [16]. The variables r, and r2 may be 
expressed in terms of the new ones. 

Then, the elementary definition of the Wigner distribution is given by the following trans- 
formation of the density matrix. 

The Wigner function (10) is real-valued, but not positive semidefinite. In terms of the wave 
functions, the definition (10) becomes 

The normalization of the Wigner function results from the normalization of the wave 
functions. 

Here, the k-integration can be performed first, giving Se-ik 'Vk = (27~)~6(s) .  The normal- 
ization (12) ensures that the quantity Nf,, where N is the number of electrons in the system, 
will approach the classical distribution function f,, in the classical limit [35]. 

Sometimes it is convenient to use the inverse Fourier transform of (10). 
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Changing variables gives a transformation that inverts the Wigner-Weyl transformation. 

P(ri' *2' ° = (2^)3 //w (k ' H ^ ' ' ) ^ (r'"r2> dk (14) 

An important feature of the phase-space approach is the possibility of expressing quantum-
mechanical expectation values in the same way as it is done in classical Statistical mechanics, 
employing integration over the phase-space. The expectation values of Operators of the form 
^l(f) and B(k), where k = p/ft, are given as follows. 

<A(*)>= ^ / / w ( k , r , 0 ^ ( r ) d k d r = E A / ^ ( r ) | ^ ( r , O I 2 d r (15) 

<B(k))= ^ / / w ( k , r , 0 ß ( k ) d k d r = X:A./5(k)|<I>,.(k,0|2dk (16) 

If the classical observable C(k, r) is a function of both momentum and position, the defini-
tion of a corresponding Hermitian Operator C is not unique. In this case, the Weyl quanti-
zation can be applied. Thereby, the function C is expressed through its Fourier transform c. 

C(k, r) = f c(a, b) e/(k a+r b) da db (17) 

The Operator C is defined by the following rule of correspondence. 

C = f c(a, b) e'(fc a+f b) da db (18) 

Then, the expectation value of C is given by the phase-space integral. 

Tr(Cp) = j C(k, r)/w(k, r, 0 dk dv (19) 

To proceed with (18), one may employ the Baker-Campbell-Hausdorff formula, 

- ^ [Ä,B] 
e A + B = e A e B e - ^ - ( 2 0 ) 

which is generally valid when [A, [A, B]] = [B, [A, B]] = 0, or in particular when [A, B] is 
a c-number. 

2.2. Marginal Distributions 
The Wigner function (10) can assume negative values. Only the marginal distributions of 
/w(k, r, t) are positive semidefinite and have the meaning of probability distributions in real 
space and momentum space, respectively. 

n{r) = ^ j / / w (k , r, 0 dk = £ > |<Pi(r, Ol2 (21) 

P(V = j^y3 / /w(k, r, 0 dr = £ p , |<D,(k, t)\2 (22) 

Here, <£>,(k, t) denotes the momentum representation of the State vector |^ , ) . The integra
tion in (22) can easify be carried out after changing variables, using (8). 

fdrfdS% (r+S-, t) ¥,* (r - *-, t) e"'ks 

= y dr, fdr2%(rlt t)V?(r2, f)e-|V<r'-» = (2fl-)3|4>i(k, t)\2 (23) 
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The marginal distributions (21) and (22) can also be expressed as the diagonal elements of 
the density matrix. 

Here, (k) denotes the electron momentum eigenstate with eigenvalue hk and cr the density 
matrix in momentum representation. Note that the latter can be used for a d u d  definition 
of the Wigner function [28, 571. 

This definition follows, for example, from ( l l ) ,  when the 1I: are replaced by 

Other marginal distributioils than the elementary ones, (21) and (22), have to be constructed 
with care. Only Hermitian operators give real marginal distributions. For the current density, 
this operator would be (kb + bk)/2. Expressing b in terms of the wave functions, we get the 
elementary current definition from wave mechanics. 

Choosing the momentum representation of b, we get the current density expressed in terms 
of the Wigner function. 

Here, the Wigner function has been introduced using (26). The current density is given by 
the first-order moment of the Wigner function, in full analogy with the classical phase space 
definition. 

For the definition of the energy density we discuss several options. Starting from the 
trace operation for the statistical average, one would consider the symmetrized operator 
(k2b + bk2)/2 and derive the marginal distribution. 

- - 
h2 -- pi [*:(I-) V2qi (r) + qi (r) v2 *: (r)] 4m* 

The last expression in (30) is obtained with the help of the stationary Schrodinger equation. 
Apparently, w1 describes the kinetic energy density, as the potential energy term V(r)n(r) is 
subtracted from the total energy term. This energy density can become negative in tunneling 
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regions, where for one or more states E( < V(r) holds. In a derivation similar to (29), one 
finds the Wigner representation of w1. 

»i(r) = ^ / d k 1 / d k 2 < J - ( k 1 , k , ) ( k , ! + k !V<1 ' -1 ' " 

= (SF/^('kl2-?v0/-<k'r,,)dk <31) 

To ensure positiveness of the energy density, in [58] the Hermitian Operator kpk is con-
sidered. Its marginal distribution can be shown to be positive semidefinite. 

Wz(r) = &*{r^r) = ^ E P i K ^ W I 2 (32) 

= 2 ^ £ / > , | V ^ ( r ) | 2 > 0 (33) 

The Wigner representation of w2 is obtained as 

M r ) = ^ / d k , / d k , < r ( k „ k 2 ) (kf - k | ) e ' * ' - « ' 

= (2^/^( |k|2 + 5T0 /«<"' r ' ' )dk (34) 

Conditions for obtaining non-negative marginal distributions are theoretically discussed 
in [59]. The Weyl correspondence (18) gives the definition of the energy density as the 
second-order moment of the Wigner function. 

^ (r)-(2^/i |k |^ (k'r^ )dk (35) 

It can be seen that (35) is just the arithmetic mean of (31) and (34), w3 = (w1 + w2)/2. 
Therefore, (35) represents the marginal distribution of the symmetrized Operator (k2p + 
2kpk + pk2)/4. 

All three definitions of the energy density give the same Statistical average (e) = Tr[e(k)p]. 
The differences among the definitions are in the V2 term, which vanishes after the r-integra-
tion. However, only the density wx seems to have a clear physical interpretation as the kinetic 
energy density. 

2.3. The Wigner Equation 
In this section, we consider a System consisting of one electron interacting with a potential 
distribution Ftot(r). This potential is assumed to be a superposition of some potential K(r) 
and a uniform electric field: Ktot(r) = V(r) — HF • r, with ftF = — eE. Although the existence of 
a field term is not physically motivated at this point, it is introduced here to demonstrate its 
treatment in the Wigner function formaiism. The potential V(r) comprises the electrostatic 
potential and the band-edge profile of the semiconductor. A uniform effective mass m* 
is assumed. In the usual coordinate representation, the Hamiltonian of the System is then 
given by 

H = H0 + V(r) - RF • r (36) 

with 
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The electron phonon interaction neglected here will be discussed in detail in Section 3. The 
evolution equation for the Wigner function is found by taking the time derivative of the 
defining Eq. (10)  and substituting the Liouville-von Neumann Eq. ( 7 )  on the right-hand side. 

In the following, the three parts of the Hamiltonian (36)  will be separately transformed. 
Unlike in Section 2.2, were calculations where done in momentum representation, we choose 
below the configuration representation to carry out the transformations [33]. 

The free-electron Hamiltonian is given by H,. To calculate the Wigner transform of H,, 
we have to transform the gradients first. Differentiating the density matrix with respect to 
the new variables r and s 

gives the relations 

Now the free-electron term transforms to a diffusion term. For the sake of brevity, we write 
pr, = p(r + s/2, r - s/2, t )  in the following. 

Next, we transform the potential term V ( r ) .  

This transformation is readily found by replacing p,,, on the left-hand side by the inverse 
Fourier transformation (13).  The remaining integral over s is denoted by Vw and referred to 
as the Wigner potential. 

Using the simple relation -(F . r ,  - F . r2 )  = -F . s, the constant-field term transforms as 

Collecting the above results gives the Wigner equation for the system Hamiltonian (36).  

The terms are arranged so to form the classical Liouville operator on the left-hand side. The 
interaction of the electron with the potential distribution V ( r )  is described by the potential 
operator on the right-hand side. As can be seen, the Wigner function in k and r depends 
in a nonlocal manner on the Wigner function in all other momentum points k' and through 
Vw also on the potential at all other locations r f s/2. 
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3. ELECTRON-PHONON INTERACTION 
The Wigner equation has frequently been solved using the finite-difference method [16, 
601, assuming the phenomenological relaxation time approximation for dissipative transport. 
Recently developed Monte Carlo methods allowed phonon scattering to be included semi- 
classically in quantum device simulations [24, 271. Use of a Boltzmann scattering operator 
acting on the Wigner distribution was originally suggested by Frensley [16]. In this section, 
the Wigner equation with a Boltzmann scattering operator is rigorously derived, using a 
many-phonon single-electron Wigner function formalism as the starting point. 

3.1. The System Hamiltonian 

The Hamiltonian (36) is now extended to describe a system consisting of one electron inter- 
acting with a many-phonon system and a given potential distribution. 

The additional components of this Hamiltonian are given by [34] 

He, = ifi C 9 ( q )  (b, eiq" - bi e-jq.') 
9 

Here, Hp is the Hamiltonian of the free phonon-system, H the electron-phonon interaction 
"9 

Hamiltonian, b, and bi denote the annihilation and creation operators for a phonon with 
momentum fiq and energy fiw,, and fi9(q) is the interaction matrix element. 

We introduce a set of basis vectors Ir, {n)) in the occupation number representation. 
A set of occupation numbers is defined as {n} = nql, nq2, . . . n,, . . . , where nq is the num- 
ber of phonons with momentum q. The Wigner-Weyl transformation of the density matrix 
p(r , ,  {n}, r,, {m}) gives the generalized Wigner function f,(k, r ,  {n}, {m), t) [28, 331. 

Note that only the electron coordinates are transformed, such that f, is a Wigner function 
on the electron phase-space, but still is the density matrix for the phonon system. 

The evolution of the generalized Wigner function is found by taking the time derivative 
of (51) and using the Liouville-von Neumann equation for the evolution of the density 
matrix. 

To continue, one may express the density matrix in the state vectors of the system. 

P ( ~ I ,  {n}, r2, {m}, t) = pi *i(rl, {n}, t) T:(r2, {m}, t) 
i 

(53) 

The creation and annihilation operators, and the occupation number operator b;b, satisfy 
the following well-known eigenvalue equations. 
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— e 

q 

-iqr 

With the help of these equations and the representation (53), the transformation of the 
free-phonon Hamiltonian is readily found. 

^ / ( r + | , W | [ « p , / 3 ( 0 ] | r - | , { m } ) e - ' k s d s 

= ^ ( e ( W ) - *({»n}))/g(k, r, {n}, {m}, t) 

The energy of the phonon state \{n}} is denoted by e({n}.). 

e({«}) = E « , » ® , (55) 
q 

The electron-phonon interaction Hamiltonian is transformed following the same lines [33]. 
Combining the two terms of the Hamiltonian (50) and the two terms of the commutator 
icn \5D) Tesdte in iuui "verms i^iateti \o \^e e^etvrun-p^onoii iriv^rratviun. \n \*n̂  eqo^iun iui 
the generalized Wigner function shown below, these four terms appear under the sum. 

(^ + ^ - ^ + jF.Vk)/l(k,r,{»}>{m},0 

= / Fw(k - k', r) /g(k\ r, {*}, {m}, 0 dk' + ^(e({w}) - e({m}))/g(k, r, {n}9 {m}, 0 

+ £ ^ ( q ) e * ^ 

/T^fg( k + f> F> K i , W ,̂ • • • Wq - 1, . . . }, {m}, A 

- e ^ y m ^ / j k + - , r, {n}, {mQl, mq2 , . . . raq - 1 , . . . }, A 

+ c-iq-ry/mq + l / g fk - | , r, {rc}, {mqi, mq2 , . . . mq + 1 , . . . }, A (56) 

Each term under the sum represents a phonon interaction event that changes only one set 
of phonon variables, increasing or decreasing the occupation number of the single-phonon 
state |q) by one and changing the electron momentum by ±q/2. 

3.2. A Hierarchy of Transport Equations 
The equation for the generalized Wigner function (56) is too complex for the purpose of 
mesoscopic device simulation. Several approximations need to be introduced in order to 
arrive at a more feasible quantum transport equation. In the following, these approximations 
are discussed. 

3.2.7. Weak Scattering Limit 
The generalized Wigner equation couples one element of the phonon density matrix, 
/g(k, r, {n}, {m}, t), with four neighboring elements, 

/g(k, r, {nqi, nq2,..., nq ± 1 , . . . }, {m}, t) (57) 

/g(k, r, {n}, {mqi, mq 2 , . . . , mq ± 1, . . . }, i) (58) 

The equations for the four nearest neighbor elements couple to second nearest neighbors 
of the element {n}, {m}, and so forth. In the weak scattering limit, all couplings between 
elements of the first and the second off-diagonals are neglected. Only the main diagonal 
terms and the first off-diagonal terms remain, as shown in Fig. 1. Higher order electron-
phonon interactions are neglected in this way. 
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Figure 1. Terms of of the phonon density matrix retained in the weak scattering limit. 

The Reduced Wigner Function
The reduced Wigner function, r, t ) , is defined as the trace of the generalized Wigner
function over all phonon states 

Further approximations are needed to evaluate this trace and hence to derive a closed equa-
tion for the reduced Wigner function One approximation is to replace any occupation
number involved in a transition by the equilibrium phonon number, and to assume
that the phonon system stays in equilibrium during the evolution of the electron state. With
these assumptions, the trace operation can be performed, and a closed equation set for the
reduced Wigner function can be obtained. The set consists of an equation for the reduced
Wigner function coupled to two auxiliary equations.

In this equation, we the Wigner potential operator by and set the classical force
to = 0.

The auxiliary equations arise from the first off-diagonal terms of the equation for the
generalized Wigner function. In the following equation, the lower sign gives and the

Although the equation for the reduced Wigner function is real-valued, the two auxiliary
equations are complex-valued. Note that depends either on some initial momentum k or
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the momentum after a completed electron-phonon interaction, k f q. On the other hand, f, 
and f2 depend on intermediate states k f q/2, where only half of the phonoil momentum 
has been transferred. 

3.2.3. Mean Field Approximation 
To simplify the equation system, one may assume a mean field over the length scale of an 
electron-phonon interaction. This mean field can be set to the local force field hF(r) = 
-VV(r). Note that this field is kept constant during an electron-phonon interaction event, 
even though the electron moves on an r-space trajectory. For a uniform electric-field, the 
potential operator becomes local, Ow[fw] = -F . Vkfw, and .the two auxiliary equations (62) 
can explicitly be solved. The solutions f,,, are expressed as path integrals over the reduced 
Wigner function. In this way, a single equation for the reduced Wigner function is derived 
from (60). 

d hk - + - .  
dt rn* 

fw(k, r, t) = / d r  /dk t  [S(k, k t,  r)fw(k' - F r ,  R(k, k', r ) ,  t - r )  
0 

- S(k', k,  r )  fw(k - F r ,  R(k, kt, r ) ,  t - r)]  (63) 

The scattering kernel is of the form 

and the r-space trajectory defined as 

R(k, k t,  7) = r - 
h(k + k') tiF , 

r+-r 
2rn* 2rn* 

To interpret the above equations, we assume some phase space point k, r and some time 
t to be given. A transition from k to k t as described by (64) starts in the past, at time t - r ,  
where the retarded momentum k - F r  has to be considered [see (63)l. At the beginning 
of the electron-phonon interaction, half of the phonon momentum is transferred, which 
determines the initial momentum k - F r  f q/2 of a phase space trajectory. With kt = k f q, 
the initial momentum becomes 

During the interaction duration r ,  the particle drifts over a phase space trajectory and arrives 
at r and k f q/2 at time t. At this time, the electron-phonon interaction is completed by 
the transfer of another f q / 2 ,  which produces the final momentum k f q. Also included 
are virtual phonon emission and absorption processes, where the initial momentum transfer 
f q / 2  at t - r is compensated by ~ q / 2  at t. This model thus includes effects due to a 
finite collision duration, such as collisional broadening and the intra-collisional field effect. 
A discussion of the integral form of (63) can be found in [63]. 

3.2.4. Levinson Equation 
For a uniform electric field and an initial condition independent of r,  (63) simplifies to the 
Levinson equation [43]. 

(i + F . v,) fw(k, t) = jo'dr /dkt[s(k, k', r)fw(k' - F r ,  t - r )  

- S(kt, k ,  r )  fw(k - F r ,  t - r)] (67) 

S is given by (64). This equation is equivalent to the Barker-Ferry equation [64] with an 
infinite electron lifetime. Recently, Monte Carlo methods for the solution of the Levinson 
equation have been developed, which allow the numerical study of collisional broadening, 
retardation effects, and the intracollisional field effect [65, 661. 
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3.2.5. Classical Limit 
The classical limit of the scattering operator in (63) is obtained by an asymptotic analysis. 
For this purpose, the equation is written in a dimensionless form. The primary scaling factors 
are k0 for the wave-vector k and t0 for the time t. Additional scaling factors to be introduced 
are s0 for the scattering rate S, e0 for the energy e, F0 for the force F, r0 for the real-space 
vector r, and cow for the interaction matrix element W. 

The key issue is now to choose an appropriate scale k0. Scaling the phonon energy to 
unity gives hk\ = m*coq. The kinetic equation is now considered on a timescale that is much 
larger than the timescale of the lattice vibrations. Therefore, one sets t0 = (eo>q)-1, where 
e <3C 1 denotes a dimensionless parameter. The remaining scaling factors are found as 

* - * , r.-*g (69) 

The frequency scale of the electron-phonon interaction can be chosen as cow = SF(gth), where 
qth is the wave number of a thermal electron. The scaled Levinson equation has the same 
form as the unsealed equation (67). The scaled scattering rate varies on a time scale of order 
e"1. To keep the time integral of order O(l), the amplitude of the scattering rate should be 
of order e'1 as well, which is obtained by setting [67] 

(70) 
(2TT)3 y 7i3a>q 

This gives a scaled scattering rate of the form 

(71) 

The classical limit is valid in the regime where the quantity defined by (70) is small, and 
thus for timescales t0 = (£wq)_1 much larger than the inverse phonon frequency. The scat
tering operator in (67) converges for e -> 0 to the Fermi golden rule operator in the weak 
sense. From the asymptotic analysis also a first-order correction to the Fermi golden rule 
is found [67]. Using parameters for GaAs at room temperature, one computes e = 0.011, 
which suggests that assuming the asymptotic regime is appropriate. 

A heuristic argument for the convergence to the golden rule is as follows. Changing vari
ables in the scattering operator in (67) gives 

rt/e 

Jo 

- sS(k\ k, ST) /w(k - SFT, t - ST)\ 

G[/W](k, 0 = J''* dT j dk'[sS(k, k', £T)/W(k' - SFT, t - ST) 

and 

sS(k', k, sr) = SF2(q) £ ( % + \ ~ 0 cos [(e(k) - e(k') + v) r - eF • (k - k ' ) y ] 

Expanding /w and sS into a Taylor series in e and keeping only terms of zeroth order leads 
to the integral, 

cos[(e(k) - e(k') + v) r]dr = 7rS[e(k) - e(k') + v] (72) 
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which evaluates to the energy-conserving S-function of the golden rule. Undoing the scaling 
gives the well-known form of the scattering rate. 

The interaction matrix element is denoted here by M = h 9 .  Introducing the total scattering 
rate h(k) = 1 S(kl, k) dk', the Boltzmann scattering operator takes on the following form. 

Finally, we consider the classical limit of the potential operator. Scaling the r-dependent 
equation (63) gives the scaled form 

This expression converges for E + 0 to the classical drift term of the Boltzmann equation. 

3.2.6. Wigner Equation with Boltzmann Scattering Operator 
To obtain a model more suitable for device simulation, the nonlocal potential operator is 
maintained, whereas in the scattering operator the classical limit is introduced. The result is a 
Wigner equation with a Boltzmann scattering operator. It is convenient to introduce formally 
a classical force field F(r) in this equation to make the form of the Liouville operator equal 
to that of the Boltzmann equation. This is accomplished by redefining the potential operator. 

Substituting OW[f] = Gw[fl - F . V,f into (63) gives the following equation, 

From a formal point of view, the classical force field F can be chosen arbitrarily, as the 
corresponding terms in (77) cancel each other. Typical choices are the mean electric field in 
a device region, the local electric field, or, of course, F = 0. Alternatively, an equation of the 
form (77) can also be obtained by using an approximation. The potential is decomposed as 
V = Vc, + Vqm, where Vc, is a smooth potential such as the electrostatic potential, that can 
be treated in the classical limit (75), and Vqm represents a rapidly varying component that 
has to be treated quantum mechanically. 

3.3. Integral Form of the Wigner Equation 

From the integro-differential form of the Wigner equation, a path-integral formulation can 
be derived. The equation to be transformed reads 

= / [ ~ ( k ,  k') + Fw(k - k', r )  + a (k ,  r) S(k - kt)] fW(k1, r ,  t) dk' 

At this point, we introduced a fictious scattering mechanism aS(k - k'), referred to as self- 
scattering [68]. Because of the 6-function, this mechanism does not change the state of the 
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electron and hence does not affect the solution of the equation. For the sake of brevity, we 
define an integral kernel T and the symbols fx. and U. 

H(k, r) = A(k, r) + o(k, r) (79) 

r n , t , , S(k, k') + Fw(k - k', r) + a(k, r) g(k - kQ 
F ( k ' k ' r ) =

 M (k ' , r ) ( 8 0 ) 

U(k, r, 0 = / r ( k , k', r) /*(k,', r) /w(k', r, f) dk' (81) 

The Liouville operator in (78) is treated by the method of characteristics. One introduces 
path variables K(t) and R(t) and takes the total time derivative of /w. 

The right-hand side equals the Liouville operator if the path variables satisfy the following 
equations of motion. 

^ K ( 0 = F(R(r)) ^ R ( 0 = v(K(0) (83) 

Now we assume some phase-space point k, r and some time t to be given. A phase-space 
trajectory with the initial condition K(f = t) = k and R(f = t) = r is obtained by formal 
integration. 

K ( 0 = k + ^ F ( R ( J O ) dy R ( 0 = r + ( v(K(y)) dy (84) 

Note that k, r, t are treated as constants in the following derivation, only t' is a variable. 
Introducing the functions 

/ w (0 = /W(K(0, R(0, O, MO = MK(0, R(O), U(f) = U(K(t% R(0 , f) (85) 

allows (78) to be rewritten as an ordinary differential equation of first order. 

£;MO + MOf*(0 = u(0 (86) 

If multiplied by an integrating factor exp[/0 /Z(y)dy], the equation takes on a form that can 
be easily integrated in time. 

d 
d?eXP fo £(y)dy]/w(0 = exp[jT £(y)dy]U(t') (87) 

The choice of the upper and lower bounds of time integration depends on whether the 
problem under consideration is time-dependent or stationary. 

The ordinary differential equation (87), which is the result of treating the Liouville opera
tor by the method of characteristics, has the same structure as the corresponding differential 
equation for the Boltzmann equation. Therefore, we can refer to the work on the Boltzmann 
equation regarding the details of the time integration of (87) [69, 70]. 
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3.3.1. The Time-Dependent Equation 
The upper bound of the time integration should be t' = t to obtain fw(t) = fw(k, r ,  t), the 
value of the unknown at the given phase space point. At t' = 0, an initial distribution f,(k, r )  
is assumed to be given. In analogy with the Boltzmann equation [70], the integral form of 
the Wigner equation is obtained. 

This equation states that the Wigner function at time t depends on the Wigner function at 
some previous time t'. Using (88) in an iterative procedure, with each iteration the time vari- 
able would move to smaller values. Therefore, another equation is desirable that describes 
the evolution of the system in forward time direction. Such an equation is given by the 
adjoint equation of (88). 

x T(k, k', r') p(kf ,  r') + g,(k1, r', t') (89) 

The derivation of the adjoint equation (89) is discussed in detail in [69, 701. 

3.3.2. The Stationary Equation 
In a stationary system, the potential and all material parameters are independent of time. 
A phase-space trajectory is invariant under time translations. This property can be conve- 
niently used to adjust the time reference of each trajectory [71, 721. In the stationary case, 
we assume the phase-space point k, r to be given at t' = 0. So the initial condition for the 
phase-space trajectory is K(0) = k and R(0) = r. For the upper bound of time integration 
of (87), we choose now t' = 0 to obtain fW(0) = fw(k, r). The lower time bound has to be 
chosen such that the f~ulctions K(t) and R(t) take on values at which the Wigner func- 
tion is known. In the steady-state, this function is known only at the domain boundary. An 
appropriate lower time bound is therefore the time when the trajectory enters the simulation 
domain. This time is denoted by t; and depends on the point k, r under consideration. The 
case that the real space trajectory R(t) never intersects the domain boundary can occur for 
a classically bound state. Then the trajectory forms a closed loop and the appropriate choice 
is t; = -oo. Integration of (87) in the time bounds discussed above results in the integral 
form of the stationary Wigner equation (cf. [71]). 

Here, f, denotes the boundary distribution. The integral form (90) represents a backward 
equation. The corresponding forward equation is given by the adjoint equation. 

OD denotes the indicator function of the simulation domain D. The initial conditions for the 
phase space trajectory are K(t) = k' and R(t) = r. 
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4. THE MONTE CARLO METHOD 
Monte Carlo is a numerical method that can be applied to solve integral equations. Applying 
this method to the various integral formulations of the Wigner equation gives rise to a variety 
of Monte Carlo algorithms, as discussed in the following. 

4.1. The General Scheme 
This section introduces the general scheme of the Monte Carlo method and outlines its 
application to the solution of integrals and integral equations. To calculate some unknown 
value m by the Monte Carlo method, one has to find a random variable £ whose expectation 
value equals E{£} = m. The variance of £ is designated a2, with a being the standard 
deviation. 

Now consider N independent random variables ijl9 f2, • • •, €N with distributions identical 
to that of £. Consequently, their expectation values and their variance are equal. 

E{£-} = m, Var{£} = <r\ i = 1, 2 , . . . , N (93) 

Expectation value and variance of the sum of all these random variables are given by 

E{£x + & + ••• + & } = E{&} + E{£2} + • • • + E { ^ } = Nm (94) 

Vartf! + & + ••• + &,} = Var{&} + Var{£2} + • • • + Var{^} = Na2 (95) 

Using the properties E{c£} = cE{£} and Var{c£} = c2Var{£}, one obtains from (94) 
and (95) 

'{*<* E T 7 t f , + 6 + - " + &r) \=m (96) 

Vta{l(fI + & + .•• + &,)} = £ (97) 

Therefore, the random variable 

i v i=l 

has the same expectation value as ^ and an N times reduced variance. A Monte Carlo simu
lation of the unknown m consists of drawing one random number £. Indeed, this is equivalent 
to drawing Af values of the random variable £, and evaluating the sample mean (98). 

The Monte Carlo method gives an estimate of both the result and the error. According 
to the central limit theorem, the sum pN = f x + £2 H h ^ of a large number of identical 
random variables is approximately normal. For this reason, the following three-sigma rule 
holds only approximately 

P{\pN - Nm\ < 3VN02} « 0.997 (99) 

In this equation, the expectation value and the variance of pN are given by (94) and (95), 
respectively. Dividing the inequality by N and using ^ = pN/N we arrive at an equivalent 
inequality and the probability will not change: 

P\ \i - m\ < 3-^L } « 0.997 (100) 

This formula indicates that the sample mean | will be approximately equal to m. The error 
of this approximation will most probably not exceed the value 3a/\fN. This error evidently 
approaches zero as N increases [73]. 
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4.1.1. Monte Carlo Integration 
We apply the Monte Carlo method to the evaluation of an integral. 

For this purpose, the integrand has to be decomposed into a product 4 = p+, where p 
is a density function, which means that p is non-negative and satisfies kb p(x) dx = 1. Inte- 
gral (101) becomes 

(102) 

and denotes the expectation value m = E{q} of some random variable q = + ( X ) .  Now the 
general scheme described in the previous section can be applied. First, a sample x,, . . . , xN 
is generated from the density p. Then the sample +,, . . . , +, is obtained by evaluating the 
function +: +i = +(xi). The sample mean 

approximates the expectation value. To employ the error estimation (loo), the variance of 
q can be approximately evaluated by the sample variance 

Because the factorization of the integrand is not unique, different random variables can be 
introduced depending on the choice of the density p. All of them have the same expectation 
value but different variance. 

4.1.2. Integral Equations 
The kinetic equations considered in this work can be formulated as integral equations of the 
form 

f (x) = J ~ ( x ,  xl)f (x') dx' + fo(x) (105) 

where the kernel K and the source term f, are given functions. Equations of this form 
are knoyn as Fredholm integral equations of the second kind. In the particular cases of 
the Boltzmann equation and the Wigner equation, the unknown function f represents the 
phase-space distribution function. The multidimensional variable x stands for (k, r ,  t )  in the 
transient case and for (k, r)  in the steady state. 

Substituting (105) recursively into itself gives the Neumann series, which if convergent, is 
a formal solution to the integral equation [74]. 

The iteration terms are defined recursively beginning with f (O)(x) = f,(x). 

The series (106) yields the function value in some given point x. However, in many cases 
one is interested in mean values of f rather than in a point-wise evaluation. Such a mean 
value represents a linear functional and can be expressed as an inner product. 
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It is to note that (105) is a backward equation. The corresponding forward equation is given 
by the adjoint equation, 

g(xl) = 1 K' (x', x)g(x) dx + A(x') 

where the kernel is defined by Kt(x', x) = K(x, x'). Multiplying (105) by g(x) and (109) by- 
f (x'), and integrating over x and x', respectively, results in the equality 

By means of (110), one can calculate a statistical mean value not only from f ,  but also from 
g, the solution of the adjoint equation. The given function A has to be used as the source 
term of the adjoint equation. The link with the numerical Monte Carlo method is established 
by evaluating the terms of the Neumann series by Monte Carlo integration, as pointed out 
in the previous section. 

Note that usage of (110) precludes a point-wise evaluation of the distribution function 
using a forward algorithm, because A(x) = 6(x) cannot be treated by the Monte Carlo 
method. The probability for a continuous random variable x' to assume a given value x is 
zero. Only the probability of finding x' within a small but finite volume around x is non-zero. 

4.2. Particle Models 

Each term of the Neumann series of the adjoint equation describes a sequence of alternating 
free flight and scattering events. A transition consisting of a free flight with initial state ki at 
time ti and a scattering process to the final state kf at time t, is described by the following 
expression. For the sake of brevity, the r-dependence of r and p is omitted in the following. 

In a Monte Carlo simulation, t,, the time of the next scattering event, is generated from an 
exponential distribution, given by the terms p expo in (111). Then, a transition from the 
trajectory end point Ki(tf) to the final state k, is realized using the kernel T. In contrast to 
the classical case, where P would represent a transition probability, such an interpretation 
is not possible in the case of the Wigner equation because P is not positive semidefinite. 
The problem originates from the Wigner potential, which assumes positive and negative 
values. However, because of its antisymmetry with respect to q, the Wigner potential can be 
reformulated in terms of one positive function V: [27]. 

Then, the kernel r is rewritten as a sum of the following conditional probability distributions. 

A CY Y 
T(k, k') = - ~ ( k ,  k') + - S(kl - k) + - [ ~ ( k ,  k') - ~ ' ( k ,  k')] (114) 

P El. El. 

S(k', k) VJ (k - k') 
~ ( k ,  k') = - 

W ' )  
, w(k,k ')= , w*(k, k') = w(kl, k) (115) 

Y 

The normalization factor associated with the Wigner potential is defined as 

In the following, different variants of generating the final state k, from the kernel r will be 
discussed. 
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4.2.1. The Markov Chain Method 
In analogy to the simple integral (102), we have now to decompose the kernel P into a 
transition probability p and the remaining function P/p. More details on the Markov chain 
method can be found in [75, 76]. With respect to (111), one could use the absolute value of 
T as a transition probability. Practically, it is more convenient to use the absolute values of 
the components of F, giving the following transition probability. 

p(kf, k ) = £ 5(kf, k') + ^ 8(kf - k') + - w(k,, k') + 1 w*(h, k') (117) 

The normalization factor is v = A + a + 2y. In the first method considered here, the free-light 
time is generated from the exponential distribution appearing in (111). 

Ptfe^kj) = M[Ki(ff)]expJ-J^M[Ki(T)]dT} (118) 

For the sake of brevity, the state at the end of the free flight is labeled k' = Ki(ff) in the 
following. To generate the final state kf, one of the four terms in (117) is selected with the 
associated probabilities A/v, a/v, y/v, and y/v, respectively. Apparently, these probabilities 
sum up to one. If classical scattering is selected, kf is generated from s. If self-scattering is 
selected, the state does not change and kf = k' holds. If the third or fourth term are selected, 
the particle state is changed by scattering from the Wigner potential and kf is selected from 
w or w*, respectively. The particle weight has to be multiplied by the ratio 

i=±(1+Th) <119) 

where the minus sign applies if kf has been generated from w*. For instance, for a quantum 
mechanical system, where the classical scattering rate A is less than the Wigner scattering 
rate y, the self-scattering rate a can be chosen in such a way that A + a = y. Then, the mul
tiplier (119) evaluates to ±3. An ensemble of particles would evolve as shown schematically 
in Fig. 2. 

In the second method, we again use the transition rate (117), but now the free flight time 
is generated with rate v rather than with fi. In this case, (111) can be rewritten as 

x v(k') expj- f 4Ki(r)] dr j exp{2 jT y[R,(r)] dr) (120) 

The exponential distribution distribution is used to generate ff and the distribution p to 
generate kf. The remaining terms form the factor by which the particle weight changes 

+1 
o- ■o O — 

+ 
o-
1 -3 +9 o — a 

+1 +3 -9 

o- < -̂o 
Figure 2. With the Markov chain method, the number of numerical particles is conserved. The magnitude of 
the particle weight increases with each event, and the sign of the weight changes randomly according to a given 
probability distribution. 
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during one free flight. Because of (T/ji)/(pv) = ± 1 , the multiplier for the ith free flight 
evaluates to 

mt = ±expJ2 fi+1 y[R,(T)]drl (121) 

Note that the absolute values of both multipliers, (119) and (121), are always greater than 
one. With each transition of the Markov chain, the particle weight is multiplied by such 
factor. Therefore, the absolute value of the particle weight will inevitably grow with the 
number of transitions on the trajectory. To solve the problem of growing particle weights, one 
can split particles. In this way, an increase in particle weight is transformed to an increase 
in particle number. 

4.2.2. Pair Generation Methods 
The basic idea of splitting is refined so to avoid fractional weights. Different interpretations 
of the kernel are presented that conserve the magnitude of the particle weight. Choosing the 
initial weight to be +1 , all generated particles will have weight +1 or - 1 . This is achieved 
by interpreting the potential operator in (77) as a generation term of positive and negative 
particles. We consider the kernel (114). 

r(kf, k ) = - 5(kf, k') + - 5(kf - k') + - [u;(kf, k') - ^*(kf, k')] (122) 
/i fi fi 

If the Wigner scattering rate y is larger than the classical scattering rate A, the self-scattering 
rate a has to be chosen large enough to satisfy the inequality y/fi < 1. Typical choices are 
fA = Max(A, y) or /JL = A + y. These expressions also hold for the less interesting case y < A, 
where quantum interference effects are less important than classical scattering effects. 

As in the classical Monte Carlo method, the distribution of the free-flight duration is given 
by the exponential distribution (118). At the end of a free flight, the complementary prob
abilities ps = X//JL and 1 — ps = a/fi are considered. With probability ps, classical scattering 
is selected. The final state is generated from s. The complementary event is self-scattering. 
In addition, with probability pw = y/fi a pair of particle states is generated from the distri
butions w and w*. The multiplier of the weight is +1 for a state generated from one of first 
three terms and —1 for a state generated from w*. Therefore, the magnitude of the initial 
particle weight is conserved, as shown in Fig. 3. 

Method Gl: In the following, we discuss the case y > A, where quantum effects are 
dominant. We begin with the smallest possible value for / / , : / / ,= Max(A, y) = y. Because 
pw = y/fi = 1, a particle pair is generated after each free flight as shown in Fig. 4. At the 
same instances, classical or self-scattering events occur. In Fig. 4 and the following figures, 
only the trajectory of a sample particle is shown and not the whole cascade of trajectories 
of the generated particles. 

Method G2: Choosing the self-scattering rate to be a = y, the kernel can be regrouped as 

r(kf, k') = - 5(kf, k') + (1 - - ) [S(kf - k') + u;(kf, k') - w*(kf, k')] (123) 

o-

o il o 

+i +i 

- i - i 

w=l Ew=l Xw=l 

Figure 3. With the pair generation method, the magnitude of the particle weight is conserved, but one initial 
particle generates a cascade of numerical particles. At all times, mass is exactly conserved. 
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Figure 4. Trajectory of a sample particle resulting from method Gl . 

3/y 

With probability ps = A//x, classical scattering is selected. Otherwise, a self-scattering event 
and a pair generation event occur. In this algorithm, classical scattering and pair generation 
cannot occur at the same time, as shown in Fig. 5. Compared to method Gl , the average 
free flight time is now reduced, because fi has been increased from y to A + y. 

4.2.3. Single-Particle Generation Methods 
The idea of this method is to further reduce the free-flight time. We rewrite the kernel as 

r(kf, k') = - s(kf, k') + - 5(kf - k') + ^ 
fi fi fi 

iwte.kO-^'te.k') (124) 

In this case, the self-scattering rate a has to be chosen large enough to satisfy the inequality 
2 y / ^ < 1. Typical choices are fi = Max(A, 2y) and /JL = A + 2y. As in method Gl , clas
sical scattering is selected with probability ps = X//JL, whereas the complementary event is 
self-scattering. In addition, with probability pw = 2y//x, particle generation is selected. If 
selected, with equal probability either the distribution w or w* is chosen to generate the 
final state kf. If w* has been chosen, the weight is multiplied by —1. 

Method G3: Assuming y > A/2 and /x = 2y gives /?w = 1. Therefore, after each free 
flight, either a positive or negative particle is generated, as depicted in Fig. 6. At the same 
instances, classical or self-scattering events occur. 

Note that in method G3 (/x = 2y), the free-flight time is reduced by a factor of two com
pared to method Gl (JJL = y), which means that now the kernel is applied twice as frequently. 
In method G3, single particles are generated at a rate of 2y, whereas in method Gl particle 
pairs are generated at half of this rate. 

Method G4: In this method, we set a = 2y and obtain /JL = A + 2y. In analogy with 
method G2, classical scattering and particle generation are now complementary events. 
Figure 7 indicates that these two types of events occur at different times. From all methods 
discussed above, this method uses the shortest free flight time. 

From a numerical point of view, method Gl and method G2 have the advantage that they 
exactly conserve charge as they generate particles pairwise with opposite sign. Method G3 
and method G4 generate only one particle each time. Because the sign of the weight is 
selected randomly, charge is conserved only on average. Simulation experiments, however, 
have shown that the quality of the pseudo random number generator is good enough to 
generate almost equally many positive and negative particles even during long simulation 

+ A \x = X + y 

T H +t +t +f 

1/y 2/7 3/7 

Figure 5. Trajectory of a sample particle resulting from method G2. 



Figure 6. Trajectory of a sample particle resulting from method G3.

times, such that the small difference of net generated particles has no visible effect on the 

Other Methods 
In method to method G4, the weight of the generated particles is because the
generation rate used equals If a generation rate larger than or a fixed time-step
less than were used, the magnitude of the generated weight would be less than one.
This approach has been followed in where the resulting fractional weights are termed
affinities. On the other hand, a generation rate less than would result in an
sampling of the physical process. Then, the magnitude of the generated weights would be
generally greater than one. 

4.3. The Negative Sign Problem

In the following, we analyze growth rates of particle weights and particle numbers associ-
ated with the different Monte algorithms. In the first Markov chain method discussed
in Section 4.2.1, the weight increases at each scattering event by the multiplier (119). The
growth rate of the weight can be estimated for the case of constant coefficients y and
Because free-flight times are generated with rate the mean free-flight time will be
During a given time interval t, on-average n scattering events will occur. The total
weight is then estimated asymptotically for t >>

+ = +

This expression shows that the growth rate is determined by the Wigner scattering rate y
independently of the classical and the self-scattering rates.

With the second Markov chain method, one readily obtains that the total weight after
free flights grows as a function of the path integral over

= =

In this equation, the are given by (121). This result generalizes (125) for a
dependent y. The growth rate is equal to the norm of the Wigner potential.

Figure 7. Trajectory of a sample particle resulting from method G4.
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In the pair generation methods, the potential operator 

has been interpreted as a generation term. It describes the creation of two new states, k - q 
and k + q. The generation rate is equal to y. When generating the second state, the sign 
of the statistical weight is changed. It should be noted that the Wigner equation strictly 
conserves mass, as can be seen by taking the zero-order moment of (77). 

/ 

Looking at the number of particles regardless of their statistical weights, that is, counting 
each particle as positive, would correspond to using the following potential operator. 

Using (129), a continuity equation for numerical particles is obtained. 

an* 
- + div J* = 2y(r)n* 
at 

Assuming a constant y, the generation rate in this equation will give rise to an exponential 
increase in the number of numerical particles N*. 

This discussion shows that the appearance of an exponential growth rate is independent 
of the details of the particular Monte Carlo algorithm, and must be considered to be a 
fundamental consequence of the non-positive kernel. 

4.4. Particle Annihilation 

The discussed particle models are instable, because either the particle weight or the par- 
ticle number grows exponentially in time. Using the Markov chain method, it has been 
demonstrated that tunneling can be treated numerically by means of a particle model [25]. 
However, because of the exponentially increasing particle weight at the very short timescale 
(2y)-l, application of this algorithm turned out to be restricted to single-barrier tunneling 
and small barrier heights only. This method can be useful for devices where quantum effects 
are weak, and the potential operator is a small correction to the otherwise classical transport 
equation. 

A stable Monte Carlo algorithm can be obtained by combining one of the particle gen- 
eration methods with a method to control the particle number. One can assume that two 
particles of opposite weight and a sufficiently small distance in phase space annihilate each 
other. The reason is that the motions of both particles are governed by the same equa- 
tion. Therefore, when they come close to each other at some time instant, the two particles 
have approximately the same initial condition and thus a common probabilistic future. In an 
ensemble Monte Carlo method, a particle removal step should be performed at given time 
steps. During the time step, the ensemble is allowed to grow to a certain limit, then particles 
are removed and the initial size of the ensemble is restored. In this work, the problem has 
been solved for the stationary transport problem. In the algorithm, the trajectory of only 
one sample particle is followed, whereas other numerical particles are temporarily stored on 
a phase space grid. Due to the opposite sign, particle weights annihilate to a large extent 
in the cells of the grid. The total residual weight in each cell has to be minimized, as it 
represents a measure for the numerical error of the method [32]. 
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5. SIMULATION RESULTS 
Virtually all published results of Wigner function-based device modeling focus on resonant 
tunneling diodes [77, 78]. In this section, three different devices are discussed. Their param
eter values are collected in Table 1, where RTD1 [36] and RTD2 [24] are devices from 
literature. The semiclassical scattering model includes polar optical, acoustic deformation 
potential, and ionized-impurity scattering. Parameter values for GaAs have been assumed. 

5.1. Comparison with Other Numerical Methods 
RTDl has been used as a benchmark device to compare different numerical approaches to 
quantum transport. In this device, the potential is assumed to vary linearly only in the double-
barrier region and to be constant in the two contact regions. Results of the Monte Carlo 
method outlined in this work have been compared to nonequilibrium Green's function-based 
results [79]. The latter have been obtained by NEMO-ID, a one-dimensional nanoelectronic 
modeling tool [80]. NEMO-ID has served as a quantitatively predictive design and analysis 
tool for resonant tunneling diodes [81-83]. 

RTDl shows a rather large coherent off-resonant valley current. Therefore, phonon scat
tering has only little effect on the current-voltage characteristics of this device. Both simu
lators predict only a slight increase in valley current due to inelastic scattering (Fig. 8). The 
resonance voltages predicted by the two solvers agree very well. 

A comparison between finite-difference results and Monte Carlo results is shown in Fig. 9. 
An important parameter is the cutoff length Lc used in the numerical Wigner transformation. 
Assuming only one spatial coordinate, Lc is introduced as follows. 

"•<*» *> - 5 S C H' + 5) - v(* - 0]e~"" ds <132) 

- -s» C" Hx+0 - K(* - 0]sin(M) ds (133) 
The cutoff length has to be selected carefully when solving the Wigner equation numerically. 
The comparison of current-voltage characteristics shown in Fig. 9 demonstrates that only 
a sufficiently large value for Lc gives a realistic result. A too small value results in an 
overestimation of the valley current. 

5.2. The Effect of Scattering 
In RTD2, the potential changes linearly in a region of 40 nm length, starting 10 nm before 
the emitter barrier and extending 19 nm after the collector barrier, as shown in Fig. 10. 
The Wigner potential is discretized using Nk = 640 equidistant kx points and Ax = 0.5 nm 
spacing in x-direction. Assuming a cutoff length of Lc = 80 nm, one would require at least 
Nk = Lc/Ax = 160. This minium value is often used in finite-difference simulations for the 
Wigner equation, but in the Monte Carlo simulation we use the considerably larger value 
stated above in order to get a better resolution of the energy domain. The annihilation mesh 
is three-dimensional. In x-direction, the grid covers the region where the Wigner potential is 
nonzero. Because of the cylindrical symmetry of the Wigner function, only two momentum 
coordinates have to be considered. The mesh extends to an energy of 6 eV in both axial and 
radial A>direction. 

Table 1. Parameter values of the simulated resonant tunneling diodes.3 

Device 
name 

RTDl 
RTD2 
RTD3 

Barrier 
height 
(eV) 

0.27 
0.3 
0.47 

Barrier 
width 
(nm) 

2.83 (5a0) 
3.0 
3.0 

Well 
width 
(nm) 

4.52 (8*o) 
5.0 
4.0 

Device 
length 
(nm) 

100.6 (178A 0) 
200.0 
270.0 

Contact 
doping 
(cm-3) 

2 x 1018 

1016 

1018 

The lattice constant of GaAs is a0 = 0.565 nm. 
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I
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voltage (V)

Figure 8. Current-voltage characteristics of at 300 K obtained from Wigner Monte and
Transport is coherent or dissipative (scatt.).

The generation rate (127) is of the order for RTD2 (Fig. 11). The rela-
tion of this rate to the typically much semiclassical scattering rate is a quantitative
measure of the fact that quantum interference effects are dominant. The zero-field contact
regions have chosen sufficiently large, such that the Wigner potential drops to zero
within these regions.

Figure 12 shows the electron concentration in RTD2 at voltages below the resonance
voltage. Classical behavior is observed before and after the double barrier, whereas in the

700 I I I I

K coherent

0.05 0.1 0.15 0.2 0.25

voltage (V)

Figure 9. Effect of the cutoff length on the current-voltage characteristics in Wigner simulations. The
difference (FD) result is taken from 
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distance (nm)

Figure 10. Conduction band edge of RTD2 for different voltages. A linear voltage drop is assumed

quantum well the behavior of the solution is nonclassical. In front of the barrier an accumu-
lation layer forms, with its maximum concentration increasing with the band bending. In the
quantum well, the concentration increases as the is approached. After the barrier
a depletion layer which grows with applied voltage. In this region, the concentration
at 0.15 V varies exponentially in response to the linear potential (see Fig. which is again
a classical property.

For voltages above the resonance voltage, the concentration in the well drops, whereas 
the depletion layer continues to grow (Fig. 13). The mean kinetic of the electrons is
depicted in Fig. 14. The energy density has been calculated from the second-order
of the Wigner function (35) and divided by the electron density to get the mean energy per
electron. In the zero-field regions, an energy close to the equilibrium energy is obtained,
which demonstrates that the energy conservation property of the Wigner potential operator
is also satisfied by the numerical Monte procedure. One has to keep in mind that
the Wigner potential can produce a rather large momentum transfer. For the chosen value

distance

Figure 11. Pair generation rate in RTD2 caused by the Wigner potential for two different voltages
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60 70 80 90 100 120 130 140

distance (nm) 

Figure 12. Electron concentration in for voltages less than the resonance voltage.

for Ax, the related energy transfer can reach values as large as 5 which shows that a
large degree of cancellation occurs in the estimator for the mean energy. Electrons injected
from the second barrier into the collector space charge region show initially a high kinetic
energy.

Phonon scattering strongly affects the current-voltage characteristic of RTD2 (Fig. 15). As
compared to the coherent case, phonon scattering leads to an increase in the valley current
and a resonance voltage shift. The large difference in the valley current can be explained
by the electron concentration in off-resonance condition (Fig. 16). With phonon scattering
included, a significantly higher concentration forms in the emitter notch, and injection in
the double barrier is increased. This indicates that a quasi bound state forms in the emitter
notch. The population of this state increases when scattering is switched on. On the other 
hand, in resonance condition where the applied voltage is lower, such a bound state does not 
form and very similar electron concentrations are observed for the coherent and noncoherent 
case (Fig. 17).

distance (nm)

Figure 13. Electron concentration in RTD2 for voltages greater than the resonance voltage. 



60 70 80 90 100 110 120 130 140

(nm)

Figure 14. Mean energy RTD2 for two voltages

5.3. Inclusion of Extended Contact Regions 

As discussed in Section 3.2.5, the Wigner equation simplifies to the Boltzmann equation
when the potential variation is sufficiently smooth. The proposed quantum Monte 
method into the semiclassical Monte method for vanishing Wigner potential.
Therefore, one can simulate a quantum region embedded in an extended classical region
with the interface between the regions correctly treated in an implicit way. By means of the
Wigner generation rate y , the simulation domain can be decomposed into quantum regions
( y 0) and classical regions ( y In Fig. 18, these regions within RTD2 are marked.
The electron concentration and the mean energy are smooth in the extended contact regions 
and not affected by the strong onset of the Wigner generation rate, as shown in Fig. 11.

In the simulation of the Wigner potential x) is discretized using 
1200 equidistant points and Ax 0.5 spacing in the x-direction. A cutoff length of

voltage (V)

Figure 15. Influence of phonon scattering on the current-voltage of the RTD2
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Figure 16. Electron concentration in RTD2 in off-resonance condition. 

1013 
60 70 80 90 100 110 120 130 140 

distance (nm) 

Figure 17. Electron concentration in RTD2 in resonance condition. 
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Figure 18. Electron concentration and mean electron energy in RTD2 at T = 300 K and 0.1 V applied voltage. 
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1 6 V

distance (nm)

Figure 19. Electron profiles

60 is assumed. The annihilation consists of 480 points in the longitudinal
and 120 points in the perpendicular direction, and the real space coordinate is
discretized using Ax 0.5 nm. The electrostatic potential has been computed using the
consistent Schrodinger-Poisson solver Figure 19 shows the electron
concentration profile in the device. At the resonance voltage of 1.2 the concentration in
the quantum well is considerably higher than in the off-resonance condition at 1.6 The
concentration in the depletion region left of the barrier depends on the injected current and 
is thus correlated with the concentration in the well.

6. CONCLUSION
The examples presented in Section 5 demonstrate that a numerical solver for the Wigner
equation can provide quantitatively correct results. One requirement is that the cutoff length
is chosen sufficiently large. The completeness relation of the discrete Fourier transform 
reflecting Heisenberg's uncertainty principle, Ak, = shows that a small will result
in a coarse grid in momentum space, and resonance peaks in the transmission coefficient 
might not be resolved properly. In the past, the Wigner equation has been solved
frequently by finite-difference methods. Due to the nonlocality of the potential operator,
all points in momentum space are coupled, resulting in a very poor sparsity pattern of the
matrix. Therefore, increasing the number of grid points in k-space, related to the cutoff
length by is limited by prohibitive memory and computation time requirements. 
This might be one reason why quantitatively correct solutions were difficult to obtain in
the past. We believe that the frequently reported accuracy problems with finite-difference
Wigner function-based device simulations result from a too coarse k-space discretization.
As this problem occurs already for one-dimensional geometries, higher dimensional simula-
tions using the finite-difference method are probably out of reach. It is interesting to note
that Frensley, who pioneered the finite-difference method for the Wigner equation
later abandoned this method and developed the quantum-transmitting boundary method to
describe coherent transport in open systems

The Monte method allows the number of k-points to be increased. In this work, the
Wigner potential has been discretized using of the order However, high-performance
resonant tunneling diodes with very high peak-to-valley current ratio pose still a problem
for the Monte method. In such a device, the density can vary over several orders of
magnitude, which often cannot be resolved by the Monte method. This problem is also
well-known from the classical Monte method. As a solution, one could apply statistical
enhancement techniques in such cases. At present, an equidistant k-grid is used for the
discretization of the Wigner potential. Because the transmission coefficient of double-barrier
structures may show very narrow resonance peaks, using an equidistant k-grid may not be 
the optimal choice. However, because of the discrete Fourier transform of the potential
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involved in the computation of the Wigner potential, the use of a nonequidistant A:-grid 
appears to be problematic. 

In a Wigner function-based simulation of one-dimensional heterostructures, fundamental 
simulation parameters such as the cutoff length are closely linked to physical device parame
ters such as the spacing from the contacts. This property stems from the choice of plane-wave 
basis sets in a quantum mechanical regime of broken translational symmetry. Although ana
lytically appealing, this basis set can cause numerical difficulties. Other approaches such as 
the nonequilibrium Green's function formalism may have the advantage that other basis sets 
can be used more straightforwardly. 

These considerations indicate that from a numerical point of view, the Wigner function 
formalism might not be the optimal choice for resonant tunneling simulation. However, 
because the formalism describes quantum effects and scattering effects with equal accuracy, 
it appears well suited especially when a quasi-ballistic transport condition without energet
ically sharp resonances is present. One strength of the Wigner function approach is the 
treatment of contact regions. Nonequilibrium transport can be simulated in the whole device 
formed by a central quantum region embedded in extended classical regions. The presented 
Wigner Monte Carlo method can bridge the gap between classical device simulation and 
pure quantum ballistic simulations. 

Development of Monte Carlo methods for the solution of the Wigner equation is still 
in the beginning. Research efforts are needed especially with respect to the negative sign 
problem. The particle generation-annihilation algorithm developed by the authors is just one 
solution to that problem. Improved variants of this algorithm or even new solution strategies 
are yet to be devised. Extension of the Monte Carlo methods to higher dimensional device 
geometries is straightforward. 
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