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ABSTRACT

An overview of models for the simulation of current
transport in micro- and nanoelectronic devices within the
framework of TCAD applications is presented. Starting
from macroscopic transport models, currently discussed
enhancements are specifically addressed. This comprises
the inclusion of higher-order moments into the transport
models, the incorporation of quantum correction and tun-
neling models up to dedicated quantum-mechanical simu-
lators, and mixed approaches which are able to account for
both, quantum interference and scattering. Specific TCAD
requirements are discussed from an engineer’s perspective
and an outlook on future research directions is given.
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1. INTRODUCTION

The continuous minimum feature size reduction of
microelectronic devices, institutionalized by the ITRS
roadmap [1], has been partly enabled by the support of so-
phisticated Technology CAD (TCAD) tools. These tools
promise to assist process and device engineers during all
stages of development, ranging from process simulation to
device and circuit simulation. Today, device engineers face
the challenge to move from the microelectronic feature
scale in the mid-90’s, with typical MOSFET gate lengths
just entering the sub-micron region, to the realm of na-
noelectronics with 90 nm gate length devices in volume
production and 6 nm gate length transistors fabricated in
research labs [2]. The continuum approximation, already
questioned in the mid-1990’s, has to be abandoned in this
regime, and different approaches for the simulation of de-
vices in the nanometer regime have been proposed.

In general, the inaccuracies of presently applied semiclas-
sical macroscopic transport models are due to non-local ef-
fects [3], either caused by classical or quantum-mechanical
non-localities. Classical non-localities arise because the
distribution of electrons in very small devices does not de-
pend on local quantities alone. Quantum-mechanical non-
localities occur due to the wave nature of electrons and
the occurrence of quantization, either due to high electric
fields as in the inversion layer of a MOSFET, or due to the
geometry as in ultrasmall double-gate or FinFET devices.

Fig. 1 depicts the hierarchy of models which are currently
used for the description of current transport. Semiclassi-
cal transport models rely on classical states characterized

by a distribution function which is governed by the Boltz-
mann transport equation. In Section 2 we will give a review
of the evolution of current semiclassical transport mod-
els, and present recent results achieved with higher-order
transport models. Quantum ballistic transport is based on
pure states described by a wave function, the evolution of
which follows Schrödinger’s equation. These approaches
are mainly used for the simulation of closed systems, such
as quantum corrections in the inversion layer of MOS-
FETs. In Section 3, these quantum-ballistic transport ap-
proaches will be described. Finally, quantum transport the-
ory deals with mixed states. There exist different formu-
lations, which can be based on the Dyson equation, the
Liouville/von Neumann equation, or the Wigner transport
equation. Section 4 deals with these approaches, which
are characterized by both scattering and quantization. A
conclusion will summarize the main findings and give di-
rections for future research.

2. SEMICLASSICAL TRANSPORT

In the early days of semiconductor technology, the electri-
cal characteristics of semiconductor devices could be esti-
mated based on simple analytic compact models, employ-
ing a variety of simplifying approximations but capturing
the basic physical principles of carrier transport. These
models were based on the drift-diffusion (DD) formalism,
where the current in the device is governed by the elec-
tric field and the concentration gradients alone. Based
on the ground-breaking work of Scharfetter and Gum-
mel [4], who first proposed a robust discretization scheme
for the drift-diffusion equations, the numerical simulation
of semiconductor devices was enabled. Computer pro-
grams such as Minimos [5] and Pisces [6] have been de-
veloped and played a pioneering role in the deeper under-
standing of current transport for engineering purposes and
in the development of miniaturized devices. For the first
time, it was possible to provide insight into the function-
ing of semiconductor devices by means of the distribution
of internal device quantities, instead of global quantities
such as current-voltage characteristics. Since then, numer-
ous transport models of increasing complexity have been
proposed. All models are coupled to the Poisson equation

∇ · (κ∇φ) = ρ(φ) , ρ(φ) = q(n− p− C) (1)

where φ denotes the electrostatic potential and κ the di-
electric permittivity. The question of current transport ba-
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Figure 1: Hierarchy of transport equations in semiconductor current transport modeling.

sically reduces to the self-consistent modeling of the non-
linear charge density ρ(φ) in (1), which includes the elec-
tron and hole concentration, the net concentration of impu-
rities, and other charges such as ionized traps.

Neglecting the quantum-mechanical nature of electrons,
carrier transport in a device is described by Boltz-
mann’s transport equation, a seven-dimensional integro-
differential equation in phase space [7]

∂f

∂t
+ v · ∇rf +

sν qE

~
· ∇kf =

(

∂f

∂t

)

coll

. (2)

Here, f(r,k, t) is the distribution of carriers in space (r),
momentum (~k), and time. The charge sign sν (ν = n, p)
distinguishes between electrons and holes. On the right-
hand side stands the collision operator which describes
scattering of particles due to phonons, impurities, inter-
faces, or other scattering sources. However, for realistic
structures, the direct solution of this equation is compu-
tationally prohibitive. It is rather solved by approximate
means applying the method of moments or using Monte
Carlo methods.

2.1. The Method of Moments
In the method of moments each term of (2) is multiplied
with a weight function and integrated over k-space. This
yields a set of differential equations in the (r, t)-space. The
moments of the distribution function are defined as

〈Φ〉 =
1

4π3

∫

Φ f(r,k, t) d3k . (3)

This generates an infinite set of equations which must be
closed by a suitably chosen ansatz [8]. Closure after the
second moment and assuming a cold Maxwellian distribu-
tion leads to the drift-diffusion equations, which for elec-
trons read

∇ · Jn = qR+ q
∂n

∂t
, (4)

Jn = qnµnE+ qDn∇n . (5)

In these equations Jn denotes the current density,R the net
recombination rate, µn the mobility, E the electric field,
and Dn the diffusion coefficient. Together with (1), a cou-
pled equation system is formed which is solved numeri-
cally by means of the box integration method.

From an engineering point of view, the drift-diffusion
model has proven amazingly successful due to its effi-
ciency, numerical robustness, and the feasibility to per-
form two- and three-dimensional studies on fairly large
unstructured grids. However, several shortcomings of this
model are critical for miniaturized devices. Especially hot-
carrier effects such as impact ionization or velocity over-
shoot motivated the development of higher-order transport
models such as the hydrodynamic, energy-transport, and
six-moments model [9]. These models allow the electron
energy distribution function to be described beyond the
Maxwellian approximation, and they are used routinely in
commercial and academic device simulators.

2.2. The Monte Carlo Method
The Monte Carlo method is well established for studying
semiconductor devices and exploring semiconductor prop-
erties. The method simulates the motion of charge car-
riers in the six-dimensional phase space formed by posi-
tion and momentum. Subjected to the action of an ex-
ternal force field, the point-like carriers follow trajecto-
ries governed by Newton’s law and the carrier’s disper-
sion relation. These drift processes are interrupted by scat-
tering events which are assumed local in space and in-
stantaneous in time. The duration of a drift process, the
type of scattering mechanism, and the state after scatter-
ing are selected randomly from given probability distribu-
tions which are characteristic to the microscopic scatter-
ing process. As a calibration tool, the full-band Monte
Carlo method has gained widespread acceptance, since it
precisely accounts for the band structure of the considered
semiconductor [10]. Fig. 2 shows a comparison of dif-
ferent macroscopic simulation approaches with full-band
Monte Carlo results for a 250 nm and a 50 nm double-
gate MOSFET [11]. It can be seen that transport models
based on two, four, and six moments deliver similar results
for the long-channel device, while only the six moments
model is able to reproduce the full-band Monte Carlo re-
sults for the short-channel device. Applying the energy-
transport model in this case yields almost no improvement
over the drift-diffusion model.

The Monte Carlo method has been enhanced to account for
quantum effects using an effective potential instead of the
self-consistent potential determined by the Poisson equa-
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Figure 2: Comparison of macroscopic transport models
with full-band Monte Carlo. While all models yield similar
results at large gate lengths, only the six-moments model
reproduces the short-channel Monte Carlo results.

tion [12], [13]. The effective potential can be obtained by
a convolution of the electrostatic potential with a Gaus-
sian function which leads to a smoothing of the original
potential. A quantum correction based on the Schrödinger
equation applied to a full-band Monte Carlo simulator is
reported in [14].

3. QUANTUM-BALLISTIC TRANSPORT

Within macroscopic transport models presented above,
quantum-mechanical effects are usually accounted for
by means of quantum corrections. The fabrication of
structures in the nanometer regime makes this approach
questionable and motivated the development of quantum-
mechanical modeling tools which calculate the carrier con-
centration by purely quantum-mechanical principles. They
became especially important for the evaluation of gate di-
electrics, which represent the smallest feature scale in mi-
croelectronics. Neglecting quantum confinement in this
regime leads to results which are not just slightly inaccu-
rate, but systematically wrong. As an example, the CV-
characteristics of an 1.5 nm dielectric layer is shown in
Fig. 3 for different poly doping concentrations calculated
classically and quantum-mechanically, showing a large
discrepancy. One-dimensional closed-boundary quantum
simulators are today established tools for the character-
ization of gate dielectric layers [15]–[17]. Such one-
dimensional solutions of the Schrödinger equation are also
frequently used to derive correction factors for the carrier
concentration calculated by macroscopic transport mod-
els [18]–[20]. They can be used to yield a quick estimate
of quantum-confinement related effects without degrading
the efficiency of the device simulator used. However, since
they are based on the closed-boundary Schrödinger equa-

tion charge transport is neglected. Thus, they are not appli-
cable to open systems characterized by thin or low energy
barriers, which give rise to complex eigenvalues and, as a
consequence, charge transport by tunneling.

3.1. Tunneling Models
Quantum-ballistic tunneling models are still predomi-
nantly applied for the simulation of gate leakage in CMOS
devices. Here, the central quantity is the quantum-
mechanical transmission coefficient TC(E) which is used
in the so-called Tsu-Esaki equation

J =
4πmeffq

h3

Emax
∫

Emin

TC(Ex)N(Ex) dEx (6)

to calculate the tunneling current density. Meth-
ods such as the Wentzel-Kramers-Brillouin (WKB), the
transfer-matrix, or quantum transmitting boundary method
have been proposed to calculate the transmission coeffi-
cient [21]. The resulting tunneling currents can be easily
incorporated into macroscopic transport models by means
of additional generation/recombination processes in (4).

However, the further reduction of channel lengths raises
the question for a fully quantum-mechanical treatment of
carrier transport. This makes the solution of Schrödinger’s
equation with open boundary conditions necessary, which
can be done by means of the quantum transmitting bound-
ary method as shown in [22], [23]. An established and
sophisticated framework for these calculations is the non-
equilibrium Green’s Function method, which is predomi-
nantly used for one-dimensional studies of resonant tunnel-
ing diodes [24]. If a system is characterized by a specific
confinement direction, two- and three-dimensional quan-
tum ballistic simulations can efficiently be performed by
means of an adiabatic decomposition [25], [26].
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Figure 3: Comparison of CV characteristics of a 1.5 nm
dielectric layer with different polysilicon doping applying
classical and quantum-mechanical simulations.

   368



3.2. Adiabatic Decomposition
The idea of adiabatic decomposition is demonstrated in the
following for a two-dimensional structure with an electro-
static potential V (x, y) [27]. Here it is assumed that y de-
notes the direction normal to a channel and that current is
predominantly flowing in x direction. The starting point
is the two-dimensional Schrödinger equation in the (x, y)
simulation domain

−
~
2

2

(

1

mx

∂2

∂x2
+

1

my

∂2

∂y2

)

ψ(x, y)+ (7)

V (x, y)ψ(x, y) = Eψ(x, y)

With respect to the y-coordinate the wave function ψ(x, y)
is now expanded in a series

ψ(x, y) =
∑

n

φn(x) ζn(y;x) (8)

The basis ζn is obtained from a solution of the one-
dimensional Schrödinger equation in transverse direction
at some given lateral position x

−
~
2

2my

∂2

∂y2
ζn(y;x) + V (x, y)ζn(y;x) = εn(x)ζn(y;x)

(9)

The eigenvalue εn(x) gives the position-dependent energy
of the n-th subband. The expansion coefficients φn(x) are
determined by a coupled system of Schrödinger equations

−
~
2

2mx

d2

dx2
φn(x) +

(

εn(x) +Ann(x)
)

φn(x)+ (10)

∑

m6=n

(

Anm(x)φm(x) +Bnm(x)
dφm
dx

)

= Enφn(x)

with coupling coefficients Anm and Bnm

Anm(x) = −
~
2

2my

∫

ζn(y;x)
∂2ζm(y;x)

∂y2
dy (11)

Bnm(x) = −
~
2

2my

∫

ζn(y;x)
∂ζm(y;x)

∂y
dy (12)

In the adiabatic approximation the coupling terms are ne-
glected. The problem simplifies to a solution of decoupled
one-dimensional Schrödinger equations for each subband.

The adiabatic decomposition can typically be applied to
the channel of an FET, where one-dimensional confine-
ment is due to the high electric field below the gate. The
method can also be applied for situations in which two-
dimensional confinement takes place, as in the channel of
ultrathin FinFET structures. In this case, a set of decoupled
two-dimensional Schrödinger equations is solved. Fig. 4
depicts a cross-section through the channel of different
multi-gate silicon-on-insulator devices, namely a FinFET
(top) and a Π-gate FET (bottom) [28]. Three-dimensional
device simulations have been performed for turned-off de-
vices (VDS=1.0 V, VGS=0.0 V) by means of coupling a two-
dimensional Schrödinger-Poisson solver to the device sim-
ulator MINIMOS-NT [29]. In this simulation, the adiabatic
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Figure 4: Carrier concentration in the middle of the chan-
nel of a turned-off triple-gate FinFET (top) and a Π-FET
(bottom). The Π-gate efficiently suppresses the spurious
drain field.

decomposition approach was used to calculate a quantum-
mechanical correction potential which was inserted into
the drift-diffusion model. The resulting carrier concentra-
tion shows typical quantum-mechanical features such as
the peak in the middle of the channel and a reduced con-
centration at the insulator interfaces. In the turned-off case,
the carrier concentration in the channel should be totally
suppressed. The simulations show that the Π-gate FET ef-
ficiently shields the channel from the drain bias as com-
pared to the standard FinFET structure [30].

3.3. Multi-Dimensional Schrödinger Solvers
Recently, simulators accounting for a full two-dimensional
solution of the open-boundary Schrödinger equation have
been reported and applied to the simulation of double-gate
MOSFETs [31], [32]. Besides the requirement for a fine
and sometimes even equidistant mesh, a main obstacle in
these approaches is that the treatment of scattering is not
straightforwardly possible. Furthermore, these simulators
are usually limited to specific geometries, restrictive grids,
or small length scales, which makes their usability for en-
gineering applications questionable. Nevertheless, these
simulation approaches are necessary for the estimation of
upper bounds of current transport at the quantum limit.
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4. QUANTUM TRANSPORT

The methods described so far are either based on the
assumption of pure classical or pure quantum transport.
Modern microelectronic devices, however, are character-
ized by the transition between large reservoirs with strong
scattering, and small regions where quantum effects may
dominate. A rigorous approach to account for both effects
is based on the Wigner function, which is given by a trans-
formation of the density matrix [33], [34]

fw(r,k, t) =

∫

ρ
(

r+
s

2
, r −

s

2
, t
)

exp(−ık · s) ds .

The kinetic equation for the Wigner function is the Wigner
transport equation which is similar to the Boltzmann equa-
tion except the Wigner potential at the right-hand side
(

∂

∂t
+ v · ∇r +

qE

~
· ∇k

)

fw =

∫

Vw(r,k − k
′)fw(k

′, r, t)dk′ +

(

∂fw

∂t

)

coll

.

(13)

The Wigner potential is defined by

Vw(r,k) =
1

ı~ (2π)3

∫

(

V
(

r+
s

2

)

−

V
(

r −
s

2

))

exp (−ik · s) ds .

(14)

From this equation the quantum drift-diffusion or quan-
tum hydrodynamic models can be derived applying the
method of moments [35]. It is therefore more suit-
able for the implementation in device simulators than a
Schrödinger-Poisson solver which introduces strong non-
localities. However, it was reported that, while the carrier
concentration in the inversion layer of a MOSFET can be
modeled correctly, the method fails to reproduce tunneling
currents [36]. Therefore, strong efforts have been under-
taken to apply the most accurate classical device simula-
tion approach, the Monte Carlo technique, to the Wigner
transport equation.

Implementations of Monte Carlo methods for solving (13)
have been reported [37], [38]. Monte Carlo methods al-
low scattering processes to be included on a more detailed
level, as compared to the finite-difference method [39]
which is practically limited to a one-dimensional momen-
tum space and the relaxation time approximation. Unlike
classical distribution functions, however, the Wigner func-
tion permits positive and negative values. Therefore, it
cannot be interpreted as a probability distribution function,
a peculiarity known as the negative sign problem. Instead,
the Wigner function can be modeled as the difference of
two positive functions which describe in-scattering and
out-scattering of particles. This approach has the advan-
tage that it allows for a seamless transition between classi-
cal and quantum-mechanical regions in a device [38]. This
method has been applied to the simulation of resonant tun-
neling diodes as shown in Fig. 5 and it was recently used
for the simulation of 10 nm double-gate MOSFETs [40].
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tration and mean energy for a resonant tunneling diode.

5. CONCLUSIONS

Semiconductor physics is a vast field and simulation ap-
proaches abound. Physicists are often tempted to use
overly complicated approaches, in an understandable ef-
fort not to lose the important physics. However, some con-
straints for engineering application should be kept in mind.
Models must be efficient: Timely results are often more
valuable than accurate analyses [41]. There is a need for
three-dimensional simulations, even if they are only rarely
applied to check for spurious effects. Device simulators
must allow a coupling with process simulators, since a de-
tailed, physics-based transport model is of no use if ge-
ometry and doping are not described correctly. Therefore,
support of unstructured grids is necessary. Furthermore,
the simulators should be general-purpose and not limited
to specific geometries or simulation modes. It is still not
clear which of the outlined quantum transport approaches
will find its way into integrated TCAD environments, but
its further success depends on efficient and accurate mod-
eling of these new effects.
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