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ABSTRACT

An adaptive three-dimensional mesh generation strategy is
presented. In contrast to other work which is based on simple
meshing techniques, we use advanced unstructured meshing
techniques, driven by error estimators, to realize automatic
adaptation and guarantee quality. The mesh optimization
strategy is based on a classification scheme with a fuzzy in-
dexing for the degree of degeneration of the elements. The
applicability and usability of this complete automated pro-
cess is presented with real-world examples.

INTRODUCTION

The methods employed in technology computer aided de-
sign (TCAD), such as finite differences, finite elements and,
finite volumes, to calculate numerical solutions of partial dif-
ferential equations require a suitable tiling of the simulation
domain with simple elements. The tiling requries to fill the
complete domain with no overlaps or no gaps. This tiling is
called tesselation. The differential equations that need to be
solved result from modeling a number of disparate physical
phenomena such as dopant diffusion, mechanical deforma-
tion, heat transfer, fluid flow, electromagnetic wave propaga-
tion, and quantum effects. How suitable a given tessellation
is depends not only on the type of equation, but also on the
method employed to compute an approximate solution.
This transition from the continuous domain to a discretized
domain or tessellation, commonly known as mesh generation

[1], will inherently produce errors in the computed results, no
matter how sophisticated or how appropriate a mathemat-
ical model is. This approximation error can be enormous,
and can completely invalidate numerical predictions if no es-
timated or quantitative measure of these errors is available.
The general subject is referred to as a posteriori error esti-

mation.
To achieve a high confidence within simulations, all results
have to stay with given error bounds. If these error bounds
cannot be guaranteed, the mesh needs to be adapted. In two

dimensions the user can supervise the generation of a mesh
and even adjust its adaptation relatively easily. The transi-
tion from two to three dimensions virtually eliminates this
possibility, as both visualization and user interaction are by
far more difficult. As a result the user has little knowledge
where to best adapt the mesh. Because of this it is essen-
tial for three-dimensional mesh generation and adaptation
to work in conjunction with some kind of error estimator
[2, 3] to make automatic generation and adaptation without
user intervention possible. An automatic mesh optimization
(mesh adaptation with a control criterion) procedure has to
guarantee the quality of this automatic approach [4].

Adaptive
mesh generation

Mesh optimization

Simulation

Error estimation Result

Figure 1: Principal flow of the adaptive mesh generation.

ADAPTIVE MESH GENERATION

When equipped with a measure for the error resulting from
the chosen mesh, the question arises how to adapt the mesh
in order to improve the accuracy of the calculated result.
This question cannot be answered in a straight-forward man-
ner due to the different requirements from TCAD.
On the one hand, process simulation requires boundary in-
tegrity, has to handle all kinds of degeneration for surface
triangles (e.g. obtuse angles) in topography simulation, and
has to generate surface and interface aligned elements for ion
implantation and diffusion simulation.
Device simulation, on the other hand, with highly non-linear
models requires a direction dependent mesh density and is
very sensitive to the underlying mesh. Device simulation is
normaly based on the finite-volume method. This method
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needs consistent control volumes, called Voronoi regions.
Therefore the mesh generator must generate the dual ele-
ments, the Delaunay elements.
The most promising mesh generation technique for three di-
mensions, the enhancement of the incremental Delaunay re-
finement algorithm to three-dimensions [5] (used in Tetgen
[6]), has not yet found its way to all engineering applications
due to the fact that a disregard for boundary integrity is the
major drawback of this method.
Tree-based mesh generation methods cannot incorporate
non-planar surfaces and in general produce a larger number
of points than necessary. Inherently the generation of surface
aligned refinement layers is not possible, although a lot of
work has been done to avoid these disadvantages [7], bound-
ary integrity is still not easily guaranteed. The quality of
the elements is mostly predetermined by the tree discretiza-
tion method and therefore limited to tetrahedra generated
from a cube. On that account it has been proven for the
two-dimensional [8] and the three-dimensional case [9] that
no degenerated elements are generated.
Attempts of error estimation and adaptive mesh generation
have already been undertaken exhibiting a highly increased
rate of convergence in the sequencing simulation step in two
dimensions [10]. The results for the three-dimensional case
have not displayed this desirable trend. This is attributable
in great part to the problems involved in mesh generation
for the three-dimensional case.
The comprehensive mesh generation approach for TCAD [1]
is ideally suited for the adaptive mesh generation part. Be-
cause of the advancing front all mesh generation parts can
also be used for mesh adaption steps driven by a posteriori
error estimators.

MESH OPTIMIZATION

To guarantee the quality during the adaptive mesh genera-
tion process, geometrical and topological optimization steps
have to be performed. The definition of a quality measure
for elements in three-dimensions is a relatively tedious task
because of the consideration of quality with regard to the
further use of the mesh. As an example a suitable mesh for
topography simulation can never be useful for device simu-
lation. Additionally a lot of different and conflicting quality
measures for tetrahedra have been established [8, 11–13]. In
addition most of the classification methods use only one of
these quality measures like surface area, volume area, radius
ratio, mean ratio, solid angle, dihedral angle, or edge ratio
to classify the elements.
This is not without difficulty, as on the one hand, most de-
generated elements (Figure 2) are not identifiable by a single
quality measure. The wedge cannot be identified by the di-
hedral angle criterion or the sliver cannot be identified by
the edge ratio. Especially in the area of TCAD some kind
of degeneracy has to be allowed for special applications to
reduce the number of points. In interconnect structures, for
instance, a lot of wedges are used mostly for the coating el-
ements. Then, the tetrahedra are classified by the number
of degenerated triangles, like daggers and blades. The dag-
ger has one short edge and at least one small angle, where
the blade has no short edge and therefore one large and two
small angles.
To allow this kind of freedom in the classification of quality

a non-straight forward classification scheme is used and sub-
divided into two main parts similar to [12]. First, we identify
four classes of quality defined by the number of small dihe-
dral angles (Figure 2).

Figure 2: Four different classes of degenerated tetrahedra
(wedge, spade, cap, sliver), sorted by the number of acute
dihedral angles.

The needle (or spire) with three daggers (the short edges are
marked in the figure), the slat (or splinter) with two opposite
short edges and therefore four daggers, and the spindle with
no short edges and therefore four blades as triangles is shown
in Figure 3.

Figure 3: Three different types of degenerated tetrahedra
(needle, slat, spindle).

Based on these two categories a fuzzy classification scheme
for tetrahedra is derived. Fuzzy means, that the indexing for
each type of degeneration is done by an adjustable thresh-
old, whereas the threshold can be adjusted to the current
application. The next diagram shows a typical example of
a degenerated tetrahedron which belongs to more than one
class of degeneration (the percent value reads for the classi-
fication amount).
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With the freedom in this classification scheme different types
of optimization processes are customized for an application
to achieve best results. In other words, we can easily search
for a global quality optimum for specific tasks.
The following improvement techniques are used in our mesh
optimization approach: vertex relocation [14], edge/face
swapping, edge collapsing, and edge splitting. Results from
different improvement techniques are shown in the next dia-
gram. The initial mesh is generated without any geometrical
or topological optimization strategy.
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The reduction of all degenerated tetrahedra and particularly
the most problematic sliver type within each optimization
step can be clearly seen (the percentages read for the relative
number compared to the total number of tetrahedra).

A real-world example from TCAD process simulation is se-
lected to demonstrate the performance of the mesh optimiza-
tion. Process simulation usually relies on the finite element
method or the level set method where the Delaunay prop-
erty is not necessary for the tessellation of the simulation do-
main. To emphasize the robustness of the optimization step
the most challenging example in form of three-dimensional
topography simulation is chosen. Starting from a base struc-
ture, in this case a realistic trench geometry, the surface is
moved according to the level set method [15] in order to sim-
ulate an isotropic deposition procedure. Afterwards the new
surface is extracted from the level set module and the sur-
face mesh is subsequently adapted [16] in order to enhance
the quality of the surface triangles and to reduce the num-
ber of mesh points. Next the new surface is merged with the
original base structure and the resulting object is meshed.
The final structure that results from the various optimiza-
tion steps can be seen in Figure 4.

Figure 4: Isotropic deposition topography simulation of a
realistic trench.

In the next diagram the result from the optimization strat-
egy to reduce the degree of degeneration is presented. All
different degeneration types are drastically lowered by the
optimization steps.
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ERROR ESTIMATION

Discretization of the equations describing the problem is
needed to make numerical treatment possible. The dis-
cretized problem then results in a discrete distribution of
quantities and ansatz functions. The accuracy of the simu-
lation does not solely depend on the quality of the underlying
mesh but also on the suitability of the ansatz functions that
have been chosen. The use of piecewise affine or constant
ansatz functions, as in the case of finite elements or finite
volumes, results in a certain characteristic of the error. In
terms of function spaces a projection of the complete space

uh

uh

Figure 5: Left: Two-dimensional representation of the er-
ror estimator. The normal component of the error changes
at the facet. Right: Discrete solution function uh and the
interpolation function uh as function over the mesh triangle.

of functions to the subspace of the chosen ansatz functions is
performed. The euclidean norm can then be used to measure
the distance of two functions.
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s

Z
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Residual based error estimation

For a residual based error estimator (RS) a globally contin-
uous function is constructed by piecewise affinely interpo-
lating the computed numerical solution (Figure 5) for each
triangle. The Laplace equation is satisfied exactly for the
interior of the triangles but is discontinuous at the bound-
aries. This discontinuity of the interpolated function leads
to an error that can be estimated locally by the following
expression [17]:

ηK = hK

`

X

E∈EK∩Eint

‖JE,n (uh) ‖2
E +

X

E∈EK

‖JE,t (uh) ‖2
E

´

. (2)

Here, EK denotes the edges of the triangle and Eint is the
set of the interior edges. The two components of the sum
are the normal component JE,n and the tangential compo-
nent JE,t of the gradient ~JE of the local discontinuity of
the interpolated function. The geometry factor hK marks a
characteristic length of the triangle such as the mean edge
length or the circumference radius.
Due to the use of piecewise affine interpolation the resulting
function is continuous and hence the tangential component
of the jump vanishes and only the normal component has to
be considered.

ZZ Error Estimator

The ZZ error estimator [18] assumes the smoothness of the
correct solution. A smoothed solution uh (Figure 5) is calcu-
lated from the numerical solution uh and then compared to
the numerical solution. The difference of uh and uh is inter-
preted as a measure for the error in the solution uh. The ZZ
error estimator has been shown to have both an upper and
a lower bound for certain types of differential equations such
as the Laplace equation [18]. Polynomial functions of de-
gree one in each tetrahedron have been chosen to obtain the
smoothed solution. The distance between the interpolated
piecewise affine function and the piecewise constant function
can be determined by the evaluation of the norm presented
in (1) and yields:

ηK =
X

i

U
2
i −

X

i6=j

UiUj , (3)
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where the Ui are the resulting potential values at the vertices
of the tetrahedron.

RESULTS

To demonstrate the overall behavior of the close interaction
between all parts a realistic interconnect line with tapered
line elements and pyramidal elements for the vias is used.
Tapered means lines with angular side walls and the vias
connect the two lines as shown in Figure 6. Afterwards the
residual and the ZZ error estimation techniques are com-
pared. The evolution of the quality of the tetrahedra during
the mesh optimization process is also presented.

Figure 6: Initial structure with potential gradient.

The residual of each element is calculated by taking its neigh-
boring elements into account, therefore the error estimates
give a good indication where to adapt the mesh and the
errors are reduced. This comes at the expense of computa-
tion time, which is twice that of the ZZ error estimator. As
can be seen in the next diagram the error decreases due to
the adaptation process, while keeping excellent overall mesh
quality.
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It is imperative for the following calculations that the sliver

type is eliminated wherever possible. The distribution of
mesh elements indicating the mesh quality based on the fuzzy
classification scheme is presented next.

W
e
d
g
e

S
p
a
d
e

C
a
p

S
li
v
e
r

N
e
e
d
le

S
la

t

S
p
in

d
le

Initial mesh

One adaptation

Second adaptation

0 %

2 %

4 %

8 %

Due to the nature of the error estimators, a visualization has
to take the fact into account, that error values are located
on the highest dimensional object, in this case on tetrahe-
dra. To give an impression of the estimated and improved
error values a three-dimensional tetrahedra visualization is
presented. The corresponding error values are mapped onto
the tetrahedra with a so-called transfer function. The final

visualized results are presented in the Figures 7 and 8. Again
the reduction of error is clearly observable.

Figure 7: RS error estimation adaptive mesh refinement
steps, initial error.

Figure 8: RS error estimation adaptive mesh refinement
steps, last adaptation step.

The next diagram presents the distribution of the ZZ esti-
mated error classes in the initial structure, after one adapta-
tion step, and after a second adaptation step. The ZZ error
estimation technique is by its design local and can therefore
not include any information from the neighboring tetrahe-
dra. Therefore this technique does not shift all elements to
the lower error classes as quickly as the residual error esti-
mation technique does.
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The next diagram presents the different steps of the mesh
optimization strategy. The reduction of each degree of de-
generation can be clearly observed.
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Finally the estimated ZZ error values are shown in Figures
9 and 10.
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Figure 9: ZZ error estimation adaptive mesh refinement
steps, initial error.

Figure 10: ZZ error estimation adaptive mesh refinement
steps, last adaptation step.

CONCLUSION

The feasibility of coupling a posteriori error estimators to
adaptive meshing has been presented. Utilizing recent ad-
vances in mesh generation it has become possible to consid-
erably increase the quality of the simulation result while at
the same time keeping the simulation time and required re-
sources to a minimum. This is achieved by only refining areas
corresponding to high error values using adaptively leading
to an automatic adjustment of mesh density in sensitive ar-
eas. The ZZ error estimator is cheaper to compute compared
to the residual error estimator, but also shows a lower rate of
convergence. The overall mesh quality is guaranteed by the
employed optimization scheme. With this complete flow the
confidence in the simulation results can be given by bounding
the errors in each step.
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