
A NOVEL TECHNIQUE FOR COUPLING

THREE DIMENSIONAL MESH ADAPTATION WITH

AN A POSTERIORI ERROR ESTIMATOR

R. Heinzl△, M. Spevak◦, P. Schwaha△, T. Grasser△

△Christian Doppler Laboratory for TCAD in Microelectronics
at the Institute for Microelectronics

◦Institute for Microelectronics, Technical University Vienna,
Gußhausstraße 27-29/E360, A-1040 Vienna, Austria

E-mail: Heinzl@iue.tuwien.ac.at

ABSTRACT

We present a novel error estimation driven three-
dimensional unstructured mesh adaptation tech-
nique based on a posteriori error estimation tech-
niques with upper and lower error bounds. In con-
trast to other work [1, 2] we present this approach
in three dimensions using unstructured meshing
techniques to potentiate an automatically adap-
tation of three-dimensional unstructured meshes
without any user interaction. The motivation for
this approach, the applicability and usability is
presented with real-world examples.

1. INTRODUCTION

Most TCAD (Technology Computer Aided De-
sign) problems can be formulated with partial dif-
ferential equations and solved by numerical meth-
ods, usually finite difference, finite element and
finite volume methods. They are used to model
disparate phenomena such as dopant diffusion,
mechanical deformation, heat transfer, fluid flow,
electromagnetic wave propagation, and quantum
effects. An essential step in these methods is to
find a proper tessellation of a continuous domain
with discrete elements, in our case tetrahedra.
This transition from the continous domain to a
discretized domain will inherently produce errors
in the computed results, no matter how sophis-
ticated or how appropriate a mathematical model
is. This approximation error can be enormous, and
can completely invalidate numerical predictions if
we have no estimated or quantitative measurement
of these errors. The general subject is referred to
as a posteriori error estimation. It is an essential
step to observe and bound the approximation error
and to have a mesh adaptation strategy to guar-

antee the accuracy of the solution within a given
range. In contrast to two dimensions where mesh
generation and adaptation techniques are mostly
based on hand crafted meshes or grids, it is almost
impossible to design grids or meshes in three di-
mensions. On that account it is very important
to generate and adapt meshes in three-dimensions
automatically.

2. MESH GENERATION AND

ADAPTATION

The first step in solving equations numerically is
the discretization of the underlying computational
domain. A widely used approach has been to
divide the domain into a structured assembly of
quadrilateral cells, with the topological informa-
tion being apparent from the fact that each interior
vertex is surrounded by exactly the same number
of cells. This kind of discretization is called struc-

tured grid or simply grid. The major disadvan-
tage of this approach is, that the discretization of
highly non-planar elements produces a large num-
ber of points in the simulation domain. As a conse-
quence the subsequent simulation and calculation
steps are slowed down requiring a lot of computa-
tional resources.
The alternative approach is to divide the compu-
tational domain into an unstructured assembly of
cells. The notable feature of an unstructured mesh
is that the number of cells surrounding a typical
interior vertex of the mesh is not necessarily con-
stant. This kind of discretization is called un-

structured mesh or simply mesh. The major
disadvantage of this approach is that the element
generation process is one of the most complicated
procedures in the field of simulation. However the
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reduction in simulation time and the requirements
on computational resources can be significant.
Based on the complex three-dimensional mesh gen-
eration process and the impracticality of using
uniform refinement strategies most of the TCAD
simulations are based on structured grids. But
with the shift to real and complex input struc-
tures the grid approach with the involved refine-
ment steps is no longer manageable. Here the un-
structured mesh generation techniques come into
play. In two dimensions most of the grid or mesh
design procedure and adaptation steps are done
by hand. With the step from two-dimensional to
three-dimensional mesh generation and adaptation
a hand crafted design and adaptation is impossi-
ble. First, the user interaction and visualization
in three-dimensions is very difficult. Secondly the
user can not be aware where the adaptation should
be done. On this account three-dimensional mesh
generation and adaptation must be coupled with
error estimation techniques to ensure an automatic
adjustment for a given problem without user inter-
action.
A difficulty in the field of mesh adaptation is that
to this date the understanding of the relation-
ship between the quality of mesh elements, nu-
merical accuracy, and stiffness matrix condition
remains incomplete, even for the simplest cases.
Experience and mathematical results have shown
that isotropic elements usually lead to good results
while degenerated elements will negatively affect
the computation. Therefore we derive an abstract
quality criterion for elements which have to be re-
fined so that automatic remeshing can be easily ac-
complished by locally removing tetrahedra patches
and inserting points derived from the error estima-
tor. Our novel technique of calculating an abstract
quality criterion to control the mesh adaptation
or remeshing step separates the mathematical er-
ror estimation step from the geometrical meshing
step and can therefore be implemented with dif-
ferent error estimation models. Also the software
components can be easily upgraded. In the field
of unstructured mesh modification the following
techniques are possible:

- H-method
This method uses a geometrical parameter h
for refinement (i.e. the height of a tetrahe-
dron).

- P-method
This method varies the degree p in the ap-
proximation (i.e. quadratic ansatz functions
within finite elements) while keeping the geo-
metrical size h unchanged.

- HP-method
This method combines the p-method with the
h-method.

- Adaptive remeshing method
This method extracts a patch of marked ele-
ments which are accordingly remeshed.

For our technique we focus mainly on the adap-
tive remeshing method (some kind of advancing
front method [3]) because of the maximum degree
of freedom within mesh adaptation.

3. ERROR ESTIMATION

The numerical expression of a discretized problem
results in a discrete distribution of quantities and
ansatz functions of a certain function class (e.g.
piecewise affine functions) to describe the behavior
of the quantities. Apart from the quality of the un-
derlying mesh the quality of the simulation essen-
tially depends on the selection of the ansatz func-
tions. Using piecewise affine or constant ansatz
functions like finite volumes or finite elements we
always obtain results with a certain error. In terms
of function spaces we carry out a projection of
the complete space of functions to the subspace
of piecewise affine or constant functions. Usually
the euclidian norm is used in order to measure the
distance between two functions.

‖f − g‖2 =

√

∫ +∞

−∞

(

f(x) − g(x)
)2

dx (1)

3.1 Residual based error estimation

On each triangle the solution function is interpo-
lated piecewise (Figure 1) affinely so as to receive a
globally continuous function. This function fulfills
the Laplace equation in the interior of the trian-
gle whereas the discontinuity of the interpolated
solution function at the boundaries leads to an er-
ror which can be estimated locally by the following
formula [4]:

ηk = hk

(

∑

E∈EK∩Eint

‖ JE,n (uh) ‖2
E +

∑

E∈EK

‖ JE,t (uh) ‖2
E

)

(2)

where EK denotes the edges of the triangle and
Eint is the set of the interior edges. The local dis-
continuity of the gradient of the interpolated func-
tion at an edge is ~JE , where JE,n is the normal
component and JE,t is the tangential component.
The geometry factor hK denotes a characteristic
length of the triangle such as the mean edge length
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Figure 1: (left) Two-dimensional representation of
the error estimator. The normal component of the er-
ror changes at the facet. (right) Discrete solution func-
tion uh and the interpolation function uh as function
over the mesh triangle

or the circumference radius. An interpretation of
the behavior of the error estimator is given in the
following. A gradient in the potential causes a flux,
which is free of sources in the case of the Laplace
equation. If the flux is discontinuous through a
facet of a tetrahedron there has to include source
density on the facet. The Laplace equation states,
however, that the source density vanishes. There-
fore the estimated error is zero if the potential be-
haves smoothly when crossing a facet. As we use
piecewise affine interpolation the function is conti-
nous and therefore the jump of the tangential field
strength has to vanish. For this reason only the
normal components of the field strength are rele-
vant.

3.2 ZZ error estimation

The ZZ error estimator [5] measures how much the
numerical solution uh differs from a smoothed nu-
merical solution uh (Figure 1). For some types
of differential equations such as the Laplace equa-
tion the ZZ estimator has been shown to have
upper and lower bounds [5]. For the interpola-
tion function of the discrete numeric solution uh

we use polynomial functions of degree one in each
tetrahedron. The distance between the interpo-
lated piecewise affine function and the piecewise
constant function can be determined by the eval-
uation of the norm (1) and yields,

ηk =
∑

i

U2
i −

∑

i6=j

UiUj (3)

where the Ui are the result values in the vertices
of the tetrahedron.

3.3 Evaluation of the error estimation

A quality statement regarding the calculation can
be given counting the simplices within a certain
error interval of error values. The range of errors
(from zero to the maximum error) is divided into
equidistant error classes, i.e. ten classes. With
this separation different adaptation strategies can
be used: minimum number of elements, error in

element, or maximum number of elements. Here
we use the maximum number of elements strategy,
which is bound to 30% in each refinement step,
and the error in element strategy, only to sort the
elements.

4. RESULTS

In the following the results of the error estimation
and mesh adaptation techniques are shown. We
use two different examples to demonstrate the be-
havior of our novel technique of coupling the error
estimation and mesh adaptation steps through
an abstract interface. First, we use a non-planar
capacitor structure and calculate the potential
distribution between the contacts. Here we use
the residual error estimation technique only to
show the shift of the quality of the elements
within each error class. The second example deals
with a realistic interconnect line with tapered
line elements (lines with angular side walls) and
a pyramid element for the via, which connects
the two lines. Here we compare the residual
error and the ZZ error estimation technique. For
the non-planar capacitor we give a comparison
of the initial error and the error value after one
remeshing step:

Initial meshing Remeshing
Tetrahedra 2,145 8,774

Minimum error 0.02 0.001
Maximum error 25.0 19.4

The next diagram shows the distribution of
error values. The number of tetrahedra is
plotted on the y-axis while the x-axis shows
the error classes. The light gray boxes show
the refined error values whereas the dark
grey boxes show the initial error values:
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200
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400
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As can be seen, the error values for the elements
are shifted to the left side indicating that the local
error values drop due to our refinement technique.
Figure 2 depicts the error values without any
refinement, whereas Figure 3 shows the distri-
bution of error values after one adaptation step
(zero stands for a lower error, and one denotes a
higher error). As we have seen in the error value
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Figure 2: Initial local error values without refinement

Figure 3: Local error values after one refinement step

diagrams the local error values are shifted to lower
values.

To show the applicability and usability for a
realistic example we solve the Laplace equation
within an interconnect structure and show the
successfully application of our technique. In
Figure 4 we depict the structure, the contacts and
the potential distribution. Figure 5 presents a
three-dimensional visualization (not a cut through
the structure) of the relative error based on the
residual error estimation technique within each
adaptation step. Compared to the residual error
estimator, Figure 6 presents the adaptation steps
based on the ZZ error estimation technique. The

Figure 4: Initial interconnect structure (top) and po-
tential distribution (bottom)

following table gives a comparison of the number
of tetrahedra after each adaptation step within
the two different error estimation techniques:

Initial step Step 1 Step 2
RS: Tetrahedra 1,720 2,052 2,334
ZZ: Tetrahedra 1,720 2,075 2,290

Figure 5: Residual based error estimator, zoomed
into the important via: first three adaptation steps

Figure 6: ZZ error estimator, zoomed into the im-
portant via: first three adaptation steps

5. CONCLUSION

Using the advantages of mesh refinement in com-
bination with a posteriori error estimation leads to
an enormous increase of simulation result quality.
The benefits of adaptive mesh refinement allow us
to locally improve the mesh quality without in-
creasing the number of mesh points dramatically.
For this reason the resolution of the critical simu-
lation domain is much higher and the relevant pro-
cesses can be better simulated whereas the regions
of lower interest do not require much simulation
time. In combination with a posteriori error es-
timation a measure was found which triggers the
refinement and indicates if the quality of the solu-
tion is resolved adequately.
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