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In our oxidation model [1] we use a normalized silicon 
concentration η(x,t) so that the value of η is 1 in pure 
silicon (Si) and 0 in pure silicon dioxide (SiO2). Advanta-
geously our model takes into account that the diffusion of 
oxidants, the chemical reaction and the volume increase 
occur simultaneously in a so-called reaction layer. In con-
trast to the sharp interface between Si and SiO2 like in the 
standard model [2], this reaction layer has a spatial finite 
width (see Fig. 1) where the value of η lies between 0 and 
1. Also thin film oxidation [3] as well as the coupling to 
the diffusion of dopants is properly treated by our model.  

During the oxidation process the chemical reaction con-
sumes Si and the newly formed SiO2 has more than twice 
the volume of the original Si. This significant volume 
increase is the main source of stress and strain in the ma-
terials.  The oxidation process is described by a coupled 
system of partial differential equations, one for the oxi-
dant diffusion, the second for the conversion of Si into 
SiO2, and a third for the mechanical problem. For the me-
chanics an elastic or a viscoelastic model [4] can be ap-
plied. The whole numerical formulation is solved by ap-
plying the finite element method. 

As representative example a (1.2 × 0.3 × 0.4) µm Si block 
with a 0.2 µm thick silicon nitride (Si3Ni4) mask is oxi-
dized.  The result of this oxidation process after a time t1 
is shown in Fig. 1. For a more physical interpretation with 
a sharp interface between Si and SiO2 the two regions can 
be extracted from the η-distribution by determining that  
η ≤ 0.5 is SiO2 and η > 0.5 is Si as shown in Fig. 2. 

Since the oxidant diffusion and the chemical reaction are 
exponentially reduced with the pressure in the material, 
the oxidation process itself is highly stress dependent. As 
shown in Fig. 4 the highest pressure in SiO2 is under the 
edge of the Si3Ni4 mask, because in this area the stiffness 
of  the mask prevents the desired volume expansion of the 
newly formed SiO2. Due to the mentioned stress depend-
ence the oxidation process in these areas is considerably 
reduced. 

If the stress dependence is not included in the simulation 
of the oxidation process, the simulation results will not 
agree with the real physic behavior, because the oxidant 
diffusion and the chemical reaction also occur under the 
Si3Ni4 mask without restriction. Because of this phe-
nomenon the SiO2 region at the same oxidation conditions 
is much more expanded than with the stress dependence 
as shown in Fig. 3. In addition, the larger forces under the 
Si3Ni4 mask cause larger displacements of this mask.  
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Figure 1: η-distribution and reaction layer with stress 

dependent oxidation at time t1. 

 
Figure 2:  SiO2 region (sharp interface) with stress 

dependent oxidation at time t1. 

 
Figure 3:  SiO2 region (sharp interface) without stress 

dependent oxidation at time t1. 

 
Figure 4:  Pressure distribution with stress dependent 

oxidation at time t1. 
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