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Abstract

This article treats the implementation of periodic boundary conditions for electrical field calculation
and capacitance extraction in the simulation software Smart Analysis Programs. Often the interconnects
represent regular structures which can be described through mirroring and periodic spatial continuation
of a given subspace. In the case of fields which can be described by the Poisson equation the mirroring
can be accomplished by applying homogeneous Neumann boundary conditions at the mirroring surface,
which can be implemented with the Finite Element Method (FEM) in quite a natural way. However, the
periodic boundaries require special treatment for the numerical discretization and grid generation.
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1 Introduction

Certain elements of integrated circuits like busses or memory cells make use of periodic structures [1, 2].
As example a part of an interconnect bus is shown in Fig. <1>. Often the capacitance between the wires
must be extracted which requires the calculation of the electric field, where the wires are connected alter-
nately to O V and to 1 V [3]. An appropriately fine resolution of the simulation area is important for the
accuracy and leads unfortunately for such domains as in Fig. <1> to the generation of a huge number of
nodes. Therefore the simulation process will demand a lot of memory, and the simulation duration can be
unacceptably long. Considering the periodicity of the structure of Fig. <1> in direction of the x axis there is
a smart way to solve the problem by investigating only one geometrical period of the structure. A possible
geometrical period is the area shown in Fig. <2>. The electrodes for the capacitance extraction consist of
one interconnect line connected to 1 V and two parts of the neighbor lines connected to 0 V, respectively,
which can be seen in the top view in Fig. <3>. The interconnect bus of Fig. <1> can be created by periodic
spatial continuation of the area of Fig. <2> along the x axis. Therefore it is not necessary to simulate the
whole area of Fig. <1>. It is sufficient to simulate a single cell of periodicity as in Fig. <2>. The simulation
has been performed by our software Smart Analysis Programs [4]. It is based on the Finite Element Method
(FEM) using tetrahedron grids [5, 6, 7]. The algorithm for the linear algebraic equations arising from the
finite element discretization is based on the iterative conjugate gradient method which uses an incomplete
Cholesky pre-conditioning technique to speed up the iteration convergence [8, 9, 10, 11]. The solution of
the Laplace equation in the dielectric is completely extracted from the data defined on the dielectric bound-
ary. Usually the electrodes are represented by Dirichlet boundary conditions and the outer boundary of the
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simulation domain by homogeneous Neumann conditions which can be implemented with FEM in a quite
natural way. Homogenous Neumann conditions on a planer surface effect the field in the simulation area
in such way, as if the simulation area would be mirrored at the respective boundary face. Such “mirroring
conditions” can be exploited for the simulation of symmetric structures and periodic structures which ex-
hibit symmetry. However for general periodic structures proper boundary conditions must be implemented
which require special treatment.

2 Electric Field Calculation and Capacitance Extraction with Periodic
Boundary Conditions

To solve the electric field E for the static case the following equations are used:

VxE=0 (D

V-D=p )
The solution of (1) is

E=—-Vy, 3)

Inserting (3) in (2) under consideration of the relationship between the electric displacement and electric
field (D = €g€, - E) leads to the Poisson equation

Ligl =V (e Vg) = -2 )
The insulators are free of electric charge (p = 0). Therefore, the solution of (4) is completely determined
by the conditions defined on the boundary 0Vp (the index D denotes “dielectric”). On the one part of
this boundary (0Vp1) Dirichlet conditions are applied: ¢(7) = ¢p. On the other part (0Vp2) Neumann
conditions: Dy = 7i- (€, - V(7)) = fo. The periodic boundary conditions are defined by two planes (Ap1
and Ay2) delimiting the simulation area. Each node of the first plane is mapped bidirectionally and uniquely
to a corresponding node on the second plane. Although each two corresponding points are separated in the
space, due to the periodic condition, they should behave as if they were attached to each other. If 77, is the
position pointer to a simulation point of .A;,; and 72 is the position pointer to the corresponding simulation
point of Ay then (1) = ¢(7p2) for each point of Ay and A.

For the numerical discretization FEM is used with a classical weighted residual approach. Thus, the electric
potential ¢ in Vp is approximated by:

o p= Z ¢;N;(7) + v(7), where v = g on OVp1, and N;(7) = 0 on OVp, for Vj. ®)
j=1

c; are unknown coefficients and NN; () and v(7) are known functions. The functions N, also called basis
functions must build a complete function system. The unknown coefficients c; are calculated by enforcing
the condition

W;Ry,dV + WiRaszdA =0, 1<:1<n (6)
Vb Vp2

where the domain residual

Ry, =L[p—¢|=L[p| =V (¢ V@), p=0 (7)
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and the boundary residual
RQVDQ :Dn(s5—<ﬂ) = Dnp — fo (3

are multiplied with a set of weighting functions W;(7), respectively W; (7). Inserting (7) and (8) in (6) leads

to

WiV - (e - V@)V + | Wi(Dup — fo)dA=0 )
OVpo

Using the first scalar Green’s theorem va W,V - (€r- ﬁgﬁ)dv = favD W;D,pd A — va VW, - (€r- ﬁé)dV

and choosing W; = —W,; and W; = N; (Galerkin method), a linear equation system for the unknown

coefficients ¢; is obtained

1 %5)

> ¢ s VN; - (e, - VN;)dV = N N; fodA — s VN; (e -Vv)dV, 1 <i<n.  (10)
D D2 D

Homogeneous or mirroring boundary conditions mean fy = 0. Therefore homogeneous Neumann con-
ditions can be implemented simply by omitting the boundary integral term from (10). This means that
every part of the boundary, where no special conditions are enforced implicitly has homogeneous Neumann
conditions.

The simulation domain Vp is discretized in tetrahedral elements. To each node 7 of Vp basis function N;
is assigned, which has the value of 1 in the node j and 0 in all other nodes. Each function IV, is different
from O only in the elements, which are directly attached to the node j, and vanishes in all other elements. If
due to the discretization N points are created in Vp, the points which do not belong to 0V p; are numbered
by 1 < j < NU and the nodes at 9Vp1 are numbered by NU + 1 < j < N. Then the function v can be
expressed as v = 30" nyyy ¢;N; in OVpy with known N; and ¢; (¢; = ¢o(r5), 7j on OVp1). Therefore
(10) leads to

NU N
ch/ VN; (e -VNj)AV == 3" ¢; | VN;-(¢ VN)dV, 1<i<NU (1)
j=1 Vb j=NU+1 VP

Naturally the points produced by the grid generation software are not ordered as in (11). To obtain the
desired node ordering an additional index array with length N is allocated. The first NU entries of this index
array refer to the nodes in Vp without 9Vp1. The remaining entries (from NU till N) refer to the nodes
on the Dirichlet boundary dVp;. The additional index assignment of the simulation nodes gives advantages
to the implementation of the periodic boundary conditions. Each two corresponding points of the plains
Ay and Ay, get the same index in the additional index array. Thus, they are assembled in the system
linear equation (11) as if they were the same point. The periodic condition also requires that each periodic
point must be connected not only to his neighbor nodes but also to the neighbor nodes of the corresponding
periodic point, which is automatically fulfilled by the element-by-element assembling of the linear equation
system (11).

The numerical capacitance calculation uses commonly the energy method C' = U?2/(2W), where U is the
voltage applied between the conductors and W is the electric energy stored in the dielectric Vp.

W=|[ E-DAdV=e¢ [ E-(e - E)V.
Vb Vp -

Thus, C is calculated from the electric field E , given by (3).
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3 Grid Generation

Although periodic boundary conditions can be applied to an arbitrary pair of faces with unique bidirectional
node mapping we will restrict this paragraph to parallelepiped structures for the sake of clarity. The periodic
boundary conditions are applied at two opposite parallel faces. The grid generated has to guarantee that the
surface grids on these faces are identical. Our interconnect simulation software Smart Analysis Programs
uses two different three-dimensional grid generation approaches. The first one is a layered approach which
extends two-dimensional grid generator [12] into the third dimension by means of linear extrusion. The
second approach is a fully unstructured grid generation method based on the program delink [13, 14]. Both
approaches do not fulfill the above mentioned requirements for periodic boundaries a priori. To extend the
grid generator for periodic boundaries we use an iterative approach. In the first step the simulation domain
is meshed without any special treatment for periodic boundaries. Afterwards the periodic boundary faces
are checked for conformity. If they are not conform they are merged and the newly generated points are
fed into the grid generator as additional input. After re-meshing of the geometry the periodic boundaries
are again checked for conformity. These steps are repeated until conformity is reached. In the layer based
meshing approach this iteration procedure must only be applied to the two-dimensional grid generation
process. The additional extrusion step preserves the conformity of the side walls. In the fully unstructured
meshing method the conformity of the nodes on the periodic faces is not sufficient, because the same set of
boundary nodes can lead to different boundary meshes (at least for cospherical points). Therefore also edge
conformity has to be guaranteed during the iteration. Because of these additional difficulties the layer based
grid generation method is preferred for problems with periodic boundaries. Unfortunately, we were not able
to prove theoretically that the iteration process necessary for fully unstructured grids will always terminate,
however we have not found any example so far, which took more than 11 iterations.

4 Simulation Results

The simulation results are evaluated by visualization of the electric field using VTK [15, 16]. In the pre-
sented example the simulation area consists of a SiO2 rectangular parallelepiped with the conductors inside
as shown in Fig. <2>. The faces parallel to the yz plane are defined as periodic boundary. At the remaining
outer faces homogeneous Neumann boundary conditions are applied. The simulated potential and the corre-
sponding iso faces with periodic boundary conditions are shown in Fig. <4> and Fig. <5>. The electric field
is equivalent to the electric field in an inner single cell of the original interconnect bus structure. That is as
if the simulation domain would be copied repeatedly in x and -x direction by the length of its x dimension.
The electric field looks like as if one boundary parallel to yz plane would be directly connected to the op-
posite one. The stamp of the electrodes which are lying on the one of the periodic faces can be seen on the
other periodic face. In order to visualize the effect of the periodic boundary conditions, the same structure
has been simulated with homogeneous Neumann boundaries (natural boundary conditions) for comparison.
The obtained electric potential distribution is displayed in Fig. <6> and Fig. <7>. In this case the effect of
the opposite electrodes is no longer seen on the side walls and the iso surfaces are now perpendicular to the
boundary. The field in the simulation area is as if the simulation area would be mirrored with respect to these
boundaries. As expected the calculated capacitance between the electrodes in the small area from Fig. <2>
is different for the different boundary conditions applied. The capacitance with the periodic boundary is
1.33 times the capacitance with homogeneous Neumann boundary. The capacitance of the whole area from
Fig. <1> is the capacitance of the small simulation domain multiplied by the number of all small simulation
domains needed to construct the complete structure.
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Figure 1: An interconnect bus. Figure 2: The simulation area. Figure 3: The electrodes in the
simulation area.

Figure 4: The electric potential distribution Figure 5: The iso faces of the electric potential
with x periodicity. distribution with x periodicity.

Figure 6: The electric potential distribution Figure 7: The iso faces of the electric potential
without periodicity. distribution without periodicity.
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