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ABSTRACT

Parasitic capacitances determine significantly the perfor-
mance of todays complex on-chip interconnect structures.
This article handles the implementation of periodic boundary
conditions for electrical field calculation and parasitic capac-
itance extraction in interconnect structures. Various exam-
ples show the impact of these convenient boundary condi-
tions.

INTRODUCTION

The numerical capacitance calculation uses commonly the
energy method C' = %, where U is the voltage applied
between the conductors and W is the electric energy stored
in the interior of the dielectric V. W can be derived from

the electric field E:

W = E-DAV = ¢,
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E - (e, - E)dV.
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E is given by E = —ﬁcp and ¢ is the solution of the equa-
tion: P

€0
The insulators are free of electric charge (p = 0). Therefore,
the solution of (1) is completely extracted from the data, de-
fined on the boundary 9Vp. On one part of this boundary
Dirichlet conditions (¢ (7) = @) are applied and on the other
part homogeneous Neumann conditions (77. V(7) = 0) [1].
For the numerical solution of the involved partial differential
equation (1) the finite element method (FEM) [2] is applied.
The simulation area is discretized in tetrahedrons. The algo-
rithm for the linear algebraic equations arising from the fi-
nite element discretization is based on the iterative conjugate
gradient method, which uses incomplete Cholesky precondi-
tioning technique to speed up the iteration convergence [3].
The accurate numerical calculation of boundary value prob-
lems such as (1) requires an appropriately fine discretization.
In large areas this leads to generation of a lot of simulation
nodes, which means sizeable memory consumption and un-
acceptably long duration of the simulation process.

V(g Vo) = 1)
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Often the interconnects represent regular structures (i.e. on-
chip interconnect buses, DRAM cells) which can be de-
scribed through mirroring and periodic spatial continuation
of a given subspace [4]. A large simulation domain can be
composed from numerous sub-domains [5]. A smart sim-
plification is to simulate only in this small sub-domain by
applying boundary conditions corresponding to the way how
the whole domain is composed from the sub-domain pattern
(by mirroring or periodic extension). Therefore the simula-
tion duration and memory consumption are decreased heav-
ily. To use this feature the simulation software has to pro-
vide mirroring and periodic functionality. The mirroring can
be easily accomplished by applying homogeneous Neumann
boundary conditions at the mirroring surface. However, the
periodic boundaries require special treatment.

We define two faces Aj, C 0V and Ay, C 0V as periodic
boundary, if:

e Each node from A;, is uniquely mapped to another
node from Asyj,.

e If 7", is the position pointer to a simulation point of A,
and 75; is the position pointer to the corresponding sim-
ulation point of Az, then ¢(71;) = ¢(72;) for each point
of Ajp and Agy,.

e Each node of A, has its own neighbor nodes and the
neighbor nodes of the corresponding node from .A;),.

Although each two corresponding periodic points are sepa-
rated in the space, due to the periodic condition, they should
behave as if they were attached to each other.

DOMAIN DISCRETIZATION

The discretization of the volume of interest is usually the first
step of the finite element analysis. In this case the simu-
lation domain is subdivided into a number of small volume
elements, in our case tetrahedral elements. Therefore the sur-
face is broken into a number of triangular elements.

For the sake of clarity this paragraph is restricted to paral-
lelepiped structures. Of course periodic boundary conditions
can be applied to an arbitrary pair of faces with unique bidi-
rectional node mapping. If at two opposite parallel faces
periodic boundary conditions are applied, the grid gener-
ated has to guarantee that the surface grids at these faces



are identical. Two different three-dimensional grid genera-
tion approaches are used in our interconnect simulation soft-
ware Smart Analysis Programs. The first one is a fully un-
structured grid generation approach which uses the program
delink [6, 7]. The second approach is a layered based method
which extends two-dimensional grid generator [8] into the
third dimension by means of linear extrusion. Both ap-
proaches do not fulfill the above mentioned requirements for
periodic boundaries a priori. To extend the grid generator for
periodic boundaries an iterative approach is used. At first the
simulation domain is meshed without any special treatment
for periodic boundaries. Afterwards the periodic boundary
faces are checked for conformity. If they are not conform
the periodic nodes are merged. Therefore at the periodic sur-
faces new points are generated which are fed into the grid
generator as additional input. These steps are repeated un-
til conformity is reached. In the layer based meshing ap-
proach this iteration procedure must only be applied to the
two-dimensional grid generation process. The conformity of
the side walls is preserved by the following extrusion step. In
the fully unstructured meshing method the conformity of the
nodes on the periodic faces is not sufficient, because the same
set of boundary nodes can lead to different boundary meshes
(at least for cospherical points). Therefore also edge confor-
mity has to be guaranteed. Because of these additional dif-
ficulties the layer based grid generation method is preferred
for problems with periodic boundaries.

ASSEMBLING

If due to the discretization N points are created, the electric
potential ¢ in Vp is approximated by the sum:

NU N
pr@=Y N;F+ Y, NP (@
j=1 j=NU+1

The shape function NN; has the value 1 only on the node j
(for ¥ = 7). N; is different from 0 only in the elements
directly attached to the node j and is O otherwise. Therefore
the weighting factor c; represents the potential on the node
j. The points which do not belong to 9Vp; are the unknown
nodes and are numbered by 1 < 57 < NU. The Dirichlet
(known) nodes (at 9V p1) are numbered by NU + 1 < j <
N. Using (2) FEM leads to a linear equation system for the
unknown c¢;.

In general the grid generation software does not order the
simulation nodes as in (2). To implement the desired node or-
dering a supplemental auxiliary index array with the length
N is allocated. This additional index array is used by the
assembling procedure. The first NU entries of this index ar-
ray refer to the nodes in Vp without 0Vp;. The remaining
entries refer to the nodes on the Dirichlet boundary dVp;
(from NU + 1 till N). The additional index assignment of
the simulation nodes gives advantages to the implementation
of the periodic boundary conditions. Each two correspond-
ing points of the plains A, and A5, get the same index in the
additional index array. Thus, they are assembled to the same
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row in the linear equation system. Due to the element-by-
element processing of the simulation volume each periodic
point has not only its neighbor nodes but it is also connected
to the neighbor nodes of the corresponding periodic point.

CONCEPTUAL FORMULATION

In the presented example which is considered part of a rep-
resentative on-chip bus structure the simulation area consists
of a S70; rectangular parallelepiped with two parallel con-
ductors inside as shown in Fig. <1>. The z axis is oriented
such that the x y and z axes build a right aligned coordinate
system. On one conductor a voltage of 1 V is applied, while
the other is set to 0 V. The conductors in this simulation area
are shown from another viewing angle in Fig. <2>.

On the interface between the dielectric and the electrodes
Dirichlet conditions are applied, which comply with the po-
tential of the electrodes. At the boundaries parallel to the
Xy plane homogeneous Neumann conditions are applied. For
the remaining outer faces different combinations of homoge-
neous Neumann conditions and periodic boundaries are in-
vestigated. Homogeneous Neumann conditions influence the
electric field in the simulation domain, as if the simulation
domain would be mirrored with respect to the face, at which
the homogeneous Neumann conditions are applied. It is con-
venient to combine opposite faces to periodic boundaries. In
this case the electric field in the simulation area is influenced
as if the simulation area would be shifted along the direction
perpendicular to these faces by the corresponding length of
the simulation area. That way the simulation domain appears
as if it could be a part of a structure, which is constructed by
mirroring of the simulation domain along the z direction and
by periodic or mirrored spatial continuation of the simulation
domain along the x and y directions. Such a structure could
be for instance an interconnect bus. The total capacitance is
the sum of the capacitances from all parts.

Figure 1: The Simulation Area.

THE ELECTRIC FIELD

The simulation results are evaluated by visualization of the
electric field using VTK[9]. The differences between the in-
vestigated cases are well shown by the potential iso faces



and by the angles between these potential iso faces and the
outer boundaries. The simulated potential distribution con-
firms with the expected one under consideration of the corre-
sponding boundary conditions.

Mirroring along the x and y axes

At the boundary faces of the simulation area parallel to yz
and xz planes homogeneous Neumann conditions are speci-
fied. Therefore the simulation domain is mirrored in Z, —Z, i/
and —¢/ directions. The mirror planes are the planes, at which
homogeneous Neumann conditions are defined. The poten-
tial distribution and the corresponding iso faces are shown in
Fig. <3> and Fig. <4>. As expected the potential iso faces
are perpendicular to the outer bounds. The iso faces should
wrap round an electrode and its imaginary mirror images.
Therefore iso faces can be seen only between the two elec-
trodes in the simulation area. The other cases should be com-
pared to this one to indicate the changes caused by the sub-
stitution of the Neumann boundaries for the periodic bound-
aries.

Periodicity along the x and mirroring along the y axis

In this case, at the boundary faces of the simulation area par-
allel to the yz plane a periodic condition is defined. That is
as if the simulation domain would be moved in & and —%
direction by the length of its x dimension. In —g and ¥ direc-
tion the simulation domain is mirrored. This behavior can be
observed in Fig. <5> and Fig. <6>. The electric field looks
like, as if the one boundary parallel to yz would be directly
connected to the opposite one. The stamp of the one of the
electrodes which is lying on the one of the periodic faces can
be seen on the other periodic face. The iso faces are not any
more perpendicular to the boundaries parallel to the yz plane.
Of course they are still perpendicular to the boundaries par-
allel to the xz plane.

Mirroring along the x and periodicity along the y axis

An interconnect bus structure is modeled, which is built by
mirroring the simulation domain from Fig. <1> along the x

Figure 2: The Electrodes.
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axis and by periodic spatial iteration along the y axis. This
case is similar to the previous one. As shown in Fig. <7> and
Fig. <8> the potential iso faces are not perpendicular to the
boundaries parallel to the xz plane, but are still perpendicu-
lar to the boundaries parallel to the yz plane. This time the
boundaries parallel to the xz plane seem to be connected to
each other.

Periodicity along the x and y axes

In this case periodic boundaries are applied at the faces paral-
lel to the xz and yz planes. That way the structure of Fig. <1>
is spatially continued periodically in Z, —Z, ¢/ and —j/ direc-
tions. The potential distribution and the corresponding iso
faces are shown in Fig. <9> and Fig. <10>. Each boundary
parallel to the z axis looks so as if it would be connected to
the opposite one. They also lie not any more perpendicular
to the potential iso faces. Each electrode is placed among the
second electrode in the simulation area and the imaginary
periodic images. The iso faces in the simulation area look
correspondingly.

As mentioned above the periodic boundary condition is not
applied at the faces parallel to the xy plane. For the specific
simulation domain of Fig. <1> in order to have a continuous
interconnect structure in z direction only mirroring (homo-
geneous Neumann boundary) can be applied.

CAPACITANCE

Table <1> shows the extracted capacitance values depend-
ing on the different boundary conditions applied. C| is the
capacitance between the conductors of Fig. <1> if at all
boundary faces homogeneous Neumann conditions are ap-
plied. The capacitance of the three other cases is relative to
it.

Table 1: The Capacitance Values Extracted Using
Different Boundary Conditions.

X mirroring and y mirroring Co

x periodic and y mirroring 1.33Co
X mirroring and y periodic 1.07Co
x periodic and y periodic 1.69Co

The smallest capacitance occurs if no periodic boundaries are
specified. The biggest capacitance is in the case of x and
y periodicity. The calculated capacitance values refer only
to the small simulation area as defined in Fig. <1>. This
simulation area is used to construct the whole domain. The
capacitance of the whole area is the capacitance of the small
simulation domain multiplied by the number of all small sim-
ulation domains needed to construct the complete structure.



Figure 3: The Potential Distribution without

Periodicity.

Figure 5: The Potential Distribution with x

Periodicity.
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Figure 7: The Potential Distribution with y
Periodicity.
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Figure 9: The Potential Distribution with xy
Periodicity.
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