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Abstract— In this work the DC and AC responses

of ohmic contact carbon nanotube field effect transis-

tors are investigated. To account for ballistic transport

in these devices, the coupled system of Poisson and

Schrödinger equations was solved. Good agreement

between simulation and experimental results confirms

the validity of this model. For AC analysis the quasi

static approximation was assumed. Simulation results

indicate the both the DC and AC response are effectively

dependent on the device geometry. Therefore by careful

device design, optimized device characteristics can be

achieved.

I. INTRODUCTION

Exceptional electronic and mechanical properties together

with nanoscale diameter make carbon nanotubes (CNTs) a

candidate for nanoscale field effect transistors (FETs). While

early devices have shown poor device characteristics, high

performance devices were achieved recently [1, 2].

The contact between metal and CNT can be of Ohmic [3]

or Schottky type [4]. In this work we focus on Ohmic

contact CNTFETs which theoretically [5] and experimen-

tally [2] show better performance than Schottky type de-

vices. In a p-type ohmic contact device holes see no barrier

while the barrier height for electrons is the band gap of

the CNT. By changing the gate voltage the transmission

coefficient of holes through the device is modulated and as

a result the total current changes [3].

In short devices (less than 100 nm) the carrier transport

through the device is nearly ballistic [2, 3], therfore we

solved the coupled Poisson and Schrödinger equations self-

consistently to investigate the behavior of theses devices.

In agreement with experimental results, simulations indicate

unwanted ambipolar behavior of these devices, which limits

the DC characteristics by reducing the Ion/Ioff ratio. We

show that by increasing the gate-drain spacer the ambipolar

behavior is suppressed and improved DC characteristics is

achieved. By increasing the gate-drain spacer the parasitic

capacitances between the gate-drain contact are reduced

and the AC response also improves. Therefore by careful

geometry design the device characteristics can be well

optimized.

II. APPROACH

In order to account for the ballistic transport we have

solved the coupled Poisson and Schrödinger equations.
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In (2) n = ns + nd and p = ps + pd, where ns,d and

ps,d represent the contributions of the source and drain to

the electron and hole concentrations, which are calculated

as (3):
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We have considered a cylindrical symmetric structure, in

which the gate surrounds the CNT and carriers were taken

into account by means of a sheet charge distributed uni-

formly over the surface of the CNT [6]. The Schrödinger

equation is solved on the surface of the tube, and is restricted

to one-dimension because of cylindrical symmetry. In (1)

superscripts denote the type of the carriers. Subscripts

denote the contacts, where s stands for the source contact

and d for the drain contact. For example, Ψn
s is the wave

function associated with electrons that have been injected

from the source contact, and Un is the potential energy that

is seen by electrons.

The drain current is calculated using the Landauer-

Büttiker formula (4).

Id =
4q

h

∫

[fs(E) − fd(E)]TC(E)dE (4)

All our calculations assume a CNT with 0.5 eV band gap,

corresponding to a diameter of 1.7 nm [2].

The coupled Schrödinger and Poisson equations are

solved iteratively [7], by using an appropriate numerical

damping factor α, where 0 < α < 1. Successive iteration

continues until a convergence criterion is satisfied. It is also

possible to make the self-consistent loop more stable, by

providing the derivate of carrier concentration with respect

to the electrostatic potential for the Poisson solver [8, 9]. In
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general there is no exact form for this term, but as proposed

in [8], ∂n/∂φ ≈ q ∂n/∂EF can be considered as a good

approximation.

To study the dynamic behavior of CNTFETs, the quasi

static approximation was assumed. Generally, in this method

device capacitances are given by the derivatives of the

various charges with respect to the terminal voltages,

Cij = χij

∂Qi

∂Vj

∣

∣

∣

∣

∣

Vk 6=j=0

(5)

where the indices i, j, k represent terminals (gate, source

or drain), and χij = −1 for i 6= j and χij = +1 for

i = j. The differentiation of these expressions is performed

numerically over steady state charges [10]. This method is

widely used for the analysis of conventional semiconductor

devices, where the charge in the semiconductor device is

partitioned into two parts indicating the contribution of the

source and drain contacts [10, 11]. For example, the gate-

source capacitance is calculated by

Csg =
∂Qse

∂Vgs

+
∂Qsq

∂Vgs

= Cse + Csq (6)

where Qse is the total charge on the source contact and

Qsq is the total charge on the tube injected from the source

contact. As shown in (6) the total gate-source capacitance

is split into two components, the first term indicates the

electrostatic gate-source capacitance and the second term

is usually referred to as quantum capacitance [12]. Ther-

fore the capacitance matrix has a rank of 3, and due to

quantum capacitances the matrix is not symmetric (Cij 6=
Cji). In this work we assumed that only the gate voltage

changes, whereas the voltages of the other terminals are

kept constant. Therfore, the capacitance matrix simplifies

to three components, and an equivalent circuit as shown

in Fig. 1 is achieved [13]. In Fig. 1, gm is the differential

transconductance calculated by

gm =
∂Ids

∂Vgs

(7)

Based on the equivalent circuit in Fig. 1, the cutoff

frequency of the device can be derived as

fT =
gm

2πCsg

√

1 + 2
Cdg

Csg

(8)

Gate

Source Drain

dg
CCsg

g   v
m  gs

Figure 1: Simplified equivalent circuit model for the dynamic
response of CNTFETs. The model is based on the
assumption that only the gate voltage changes.
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Figure 2: Comparison of the experimental and simulation results
a) Transfer characteristics, b) Output characteristics.

III. SIMULATION RESULTS AND DISCUSSIONS

For a fair comparison with experimental results, we used

the same material and geometrical parameters as reported

in [2]. Although unlike the real device a cylindrical symme-

try for simulations was assumed, there is a good agreement

between simulation and experimental results, see Fig. 2. The

ambipolar behavior is clearly observed in the off regime,
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Figure 3: Sketch of the cylindrical device.
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Figure 4: The effect of LGD on the band-edges profile of the
device. VG = 0.5V and VD = −0.5V.

see Fig. 2-a. This behavior can be well understood by

considering the band edge profiles of the device. The device

structure is sketched in Fig. 3. As shown in Fig. 4, if

the drain voltage becomes higher than the gate voltage

the barrier thickness for electrons at the drain contact is

reduced and the tunneling current of electron increases. This

behavior is more apparent in Schottky contact devices [14].

We have shown that a double gate structure can be used

to suppress the ambipolar behavior of Schottky contact

devices [15]. In a double gate device the carrier injection

at the source and drain contacts are controlled separately.

In ohmic contact devices because of asymmetric barrier

heights, even a single gate device can reduce the ambipolar

behavior. As shown in Fig. 4, by increasing LGD the band

edge profile near the drain contact is less affected by the gate

voltage. Therfore, when the potential difference between

the gate and drain contacts increases the barrier thickness

for electrons near the drain contact is less reduced and as

a results the tunneling current of electrons is suppressed.

In Fig. 5 the the effect of increasing spacer thickness on the

transfer characteristics of the device is shown. By increasing

LGD the off current decreases, while the on current remains

unchanged. The Inset of Fig. 5 shows that the differential

transconductance remains also unchanged.

Note that this method can not be applied to conventional

MOSFETs, because they are charge controlled devices.

By changing the gate voltage the channel conductivity is

modulated. In contrast the channel of CNTFETs exhibits a

constant conductivity (G = 2q2/h per mode) and the gate

voltage modulates the transmission coefficient of carriers

through the device. The band edge profile near the source

contact plays an important role in determining the total

current, since at high drain voltages all the carriers which

cross the barrier near the source contact will be absorbed

by the drain contact (neglecting minor quantum mechanical

reflections).

Fig. 6 shows the effect of increasing of LGD on the
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Figure 5: The effect of LGD on the transfer characteristics. The
inset shows the differential transconductance

mutual capacitances between terminals. As seen in both

cases the electrostatic capacitances dominate the quantum

capacitances. By increasing LGD the electrostatic capaci-

tance between gate and drain contacts is reduced. In general,

the model (8) suggests that for a better frequency response

the differential transconductance of a device should increase

and the parasitic capacitances should decrease. We showed

that by increasing LGD, the differential transconductance

of the device is not affected, while the gate drain parasitic

capacitance is decreased. Based on (8) for the device with

LGD = 5nm the cutoff frequency is fT ≈ 160 GHz, but

for the device with LGD = 25nm the cutoff frequency is

fT ≈ 210 GHz. The comparison of output characteristics

and cutoff frequencies indicates that by increasing LGD both

the DC and AC response of the device are improved.

IV. CONCLUSION

By appropriately selecting the gate-drain spacer thickness

both the DC and AC response of ohmic contact CNTFETs

are improved. By increasing the gate-drain spacer the am-

bipolar behavior is suppressed and the parasitic capacitance

between the gate and drain contacts is reduced. By sup-

pressing the ambipolar behavior the Ion/Ioff ratio increases

by three-orders of magnitude, and by reducing the parasitic

capacitances the cutoff frequency increases about 30%. As

opposed to CNTFETs, this method is not applicable to

conventional MOSFETs because of different mechanisms in

controlling the current flow through the device.
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Figure 6: The effect of LGD on the electrostatic and quantum capacitances associated with the a) Source contact, and b) Drain contact
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