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Abstract:
A study of ohmic contact carbon nanotube field effect

transistors is presented. The effect of the gate-drain spacer

on the DC and AC response of the device was studied.

Simulation results suggest that by appropriately selecting

the gate-drain spacer both the DC and AC characteristics

of the device are improved.

1. Introduction

Exceptional electronic and mechanical properties together

with nanoscale diameter make carbon nanotubes (CNTs)

candidates for nanoscale field effect transistors (FETs).

High performance CNTFETs were achieved recently [1–

5]. In short devices (less than 100 nm) carrier transport

through the device is nearly ballistic [3, 6]. We solved the

coupled Poisson and Schrödinger equation system to study

the DC response of CNTFETs. There is a good agreement

between simulation and experimental results, indicating

the validity of the model. The Quasi Static Approxima-

tion (QSA) was used to investigate the AC response of

these devices.

The contact between metal and CNT can be of Ohmic [6]

or Schottky type [7]. In this work we focus on Ohmic

contact CNTFETs which theoretically [8] and experimen-

tally [3] show better performance than Schottky contact

devices. In a p-type device with ohmic contacts holes see

no barrier while the barrier height for electrons is Eg. By

changing the gate voltage the transmission coefficient of

holes through the device is modulated and as a result the

total current changes [6]. However, unwanted ambipolar

behavior is observed, which limits the DC characteristics

of the device by reducing the Ion/Ioff ratio. This behavior

is more apparent in Schottky contact devices, where both

electrons and holes see a barrier height of Eg/2 [9]. In our

previous work [10] we showed that a double gate structure

can be used to suppress the ambipolar behavior of Schot-

tky contact devices. In a double gate device the carrier

injection at the source and drain contacts are controlled

separately. In ohmic contact devices, however, because of

asymmetric barrier heights the ambipolar behavior can be

reduced without the need of the second gate. We prove

that by appropriately selecting the gate-drain spacer not

only the ambipolar behavior and DC characteristics, but

also the AC characteristics of the device are improved.

2. Approach

In this section the models which were used to study the DC

and AC response of CNTFETs are explained. As will be

shown at the end of this section we achieve a good agree-

ment between simulation and experimental results.

2.1 DC Response

In order to account properly for ballistic transport we have

solved the coupled Poisson and Schrödinger equations.
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We have considered a cylindrical symmetric structure, in

which the gate surrounds the CNT, such that the Poisson

equation (1) is restricted to two-dimensions. In (2) super-

scripts denote the type of the carriers. Subscripts denote

the contacts, where s stands for the source contact and d
for the drain contact. For example, Ψn

s is the wave func-

tion associated with electrons that have been injected from

the source contact. The Schrödinger equation is solved on

the surface of the tube, and is restricted to one-dimension

because of cylindrical symmetry. All our calculations as-

sume a CNT with 0.5 eV band gap, corresponding to a

diameter of 1.7 nm [3].

The space charge density in (1) is calculated as:

Q =
q(p − n)δ(ρ − ρcnt)

2πρ
(3)

where n and p are the total electron and hole concentra-

tions per unit length. In (3) δ/ρ is the Dirac delta function

in cylindrical coordinates, indicating that carriers were

taken into account by means of a sheet charge distributed

uniformly over the surface of the CNT [11]. Including the

source and drain injection components, the total electron

concentration in the CNT is calculated as:

n =
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where fs,d are equilibrium Fermi functions at the source

and drain contacts, respectively. The total hole concentra-

tion in the CNT is calculated analogously.
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The Landauer-Büttiker formula is used for calculating the

current:

In,p =
4q

h

∫

[fn,p
s (E) − fn,p

d (E)]TCn,p(E)dE (5)

where TCn,p(E) are the transmission coefficients of elec-

trons and holes through the device. The factor 4 in (4)

and (5) stems from the twofold band and twofold spin de-

generacy.

2.2 Dynamic Response

To study the dynamic behavior of CNTFETs, the QSA was

used. Generally in this method device capacitances are

given by the derivatives of the various charges with respect

to the terminal voltages,

Cij = χij

∂Qi

∂Vj

∣

∣

∣

∣

∣

Vk 6=j=0
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where the indices i, j, k represent terminals (gate, source

or drain), and χij = −1 for i 6= j and χij = +1 for i = j.

The differentiation of these expressions is performed nu-

merically over steady state charges [12]. This method is

widely used for the analysis of conventional semiconduc-

tor devices, where the charge is partitioned into two parts

indicating the contribution of the source and drain con-

tacts [12, 13]. For example, the gate-source capacitance is

calculated by

Csg =
∂Qse

∂Vgs

+
∂Qst

∂Vgs

= Cse + Csq (7)

where Qse is total charge charge on the source contact and

Qst is the total charge on the tube injected from the source

contact. As shown in (7) the total gate-source capacitance

is split into two components, the first term indicates the

electrostatic gate-source capacitance and the second term

is usually referred to as quantum capacitance [14]. The

capacitance matrix has a rank of 3, and due to quantum

capacitances the matrix elements are not reciprocal (Cij 6=
Cji). In this work we assumed that only the gate voltage

changes, whereas the voltages of the other terminals are

kept constant. Therfore, the capacitance matrix simplifies

to three components, and an equivalent circuit as shown

in Fig. 1 is achieved [15]. In Fig. 1, gm is the differential

transconductance calculated by gm = ∂Ids/∂Vgs. Based

on the equivalent circuit in Fig. 1, the cutoff frequency of

the device can be derived as

fT =
gm

2πCsg

√

1 + 2
Cdg

Csg

(8)

Gate

Source Drain

dg
CCsg

g   v
m  gs

Figure 1: Simplified equivalent circuit model for the

dynamic response of CNTFETs.
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Figure 2: Comparison of the experimental and

simulation results a) Transfer characteristics, b) Output

characteristics.

2.3 Comparison with Experimental Data

For a fair comparison with experimental results, we used

the same material and geometrical parameters as reported

in [3]. As shown in Fig. 2, there is a good agreement be-

tween simulation and experimental results despite the fact

that the cylindrical structure is only an approximation of

the real device structure.

3. The Effect of the on the Device
Characteristics

First the operation of CNTFETs and the ambipolar behav-

ior is explained. Then the effect of the gate-drain spacer,

LGD, (see Fig. 3) on the ambipolar behavior, DC, and AC

response of CNTFETs is studied.

We consider a p-type ohmic device, similar to that re-

ported in [3]. As shown in Fig. 2-a, the current has a min-

imum. This due to the well known ambipolar behavior

of these devices, which can be well understood by con-
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sidering the band edge profiles of the device. As shown

in Fig. 4, if the drain voltage becomes higher than the

gate voltage, the barrier thickness for electrons at the drain

contact is reduced and the tunneling current of electron in-

creases. At the minimum point electrons and holes have

the same contribution to the total current and in other re-

gions either electrons or holes contribute mostly to the to-

tal current. As shown in Fig. 4, by increasing LGD the

band edge profile near the drain contact is less affected

by the gate voltage. Therfore, when the voltage between

the gate and drain contacts increases the barrier thickness

for electrons near the drain contact is less reduced, and as

a result the tunneling current of electrons is suppressed.

In Fig. 5 the the effect of increasing this spacer on transfer

characteristics of the device is shown. By increasing LGD

the off current decreases, while the on current remains un-

changed. The Inset of Fig. 5 shows that the differential

transconductance remains also unchanged.

This method can not be applied to conventional MOS-

FETs. MOSFETs are charge controlled devices, by chang-

ing the gate voltage the channel conductivity is modulated.

In contrast the channel of CNTFETs exhibits a constant

conductivity (G = 2q2/h per mode) and the gate voltage
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Figure 3: Sketch of the cylindrical device.
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Figure 4: The effect of LGD on the band-edge profiles of

the device. VG = 0.2V and VD = −0.5V.

modulates the transmission coefficient of carriers through

the device. The band edge profile near the source contact

plays an important role in determining the total current,

since at high drain voltages all the carriers which cross

the barrier near the source contact will be absorbed by the

drain contact (neglecting minor quantum mechanical re-

flections).

Fig. 6 shows the effect of increasing of LGD on the mutual

capacitances between terminals. As seen in both cases the

electrostatic capacitances dominate the quantum capaci-

tances. By increasing the LGD the electrostatic capaci-

tance of the gate-drain contact is reduced. In general, for

a better frequency response the differential transconduc-

tance of a device should be increased and the parasitic ca-

pacitances should be decreased, see (8). We showed that

by increasing LGD, the differential transconductance of

the device is not affected, while the gate drain parasitic

capacitance is decreased. Based on (8) for the device with

LGD = 5nm the cutoff frequency is fT ≈ 160 GHz, but

for the device with LGD = 25nm the cutoff frequency is

fT ≈ 210 GHz. The comparison of output characteristics

and cutoff frequencies indicates that by increasing LGD

both the DC and AC response of the device are improved.

4. Conclusion

By appropriately selecting the gate-drain spacer both the

DC and AC response of ohmic contact CNTFETs are im-

proved. By increasing the gate-drain spacer the ambipo-

lar behavior is suppressed and the parasitic capacitance

between the gate and drain contacts is reduced. By sup-

pressing the ambipolar behavior the Ion/Ioff increases by

three-orders of magnitude, and by reducing the parasitic

capacitances the cutoff frequency increases about 30%.
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Figure 5: The effect of LGD on the transfer characteristics.

The inset shows the differential transconductance.
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Figure 6: The effect of LGD on the electrostatic and quantum capacitances associated with the a) Source contact, and b)

Drain contact.
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