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ABSTRACT

We demonstrate the applicability of fully three-
dimensional device simulation with the investigation of
tunneling currents through oxides and show its bene-
fit for the understanding of physical phenomena espe-
cially in the nanometre regime. We compare leakage
current measurements from three oxides with different
thicknesses (7nm, 15nm, and 50nm), measured by an
atomic force microscope (AFM), with simulated Fowler-
Nordheim (FN) current distributions and show the ne-
cessity of including surface roughness as an essential
part of three-dimensional simulation.

INTRODUCTION

During the investigation of gate leakage measurements
of oxides with different thicknesses, as shown in Fig-
ure 1, it became apparent that taking only the flatband
voltage of each of the measured devices into account is
insufficient for understanding the measured data. This
is shown in Figure 1 where the tunneling currents do
not overlap with the theoretical Fowler-Nordheim (FN)
curve.

Although the regions indicated in the figure exhibit the
characteristics of FN tunneling the curves should over-
lap for this tunneling mechanism. It was suspected that
three-dimensional effects due to surface roughness are
at least partially responsible for the observed discrep-
ancy. This spawned interest on how to describe these
three-dimensional effects. To investigate the influence
of surface roughness on the electrical characteristics of
oxides, height data sets obtained from AFM measure-

469

Gate current [HA]

6
Eqy [MV/cm]

Figure 1: Comparison of the measured oxide tunneling
currents. The measurements were performed at austriami-
crosystems.

ments were used as input parameters for modeling. The
measured samples provided by austriamicrosystems cor-
responded to the ones subject to the leakage current in-
vestigation and were measured at the Institute for Solid
State Electronics at the Technical University of Vienna.

AFM MEASUREMENTS

To overcome the difficulties with raw data sets from
AFM measurement a pre-processing module (AFM-
StructureBuilder: ASBuilder) has been developed to
correct the raw data sets and to perform the three-
dimensional meshing step and contact building.



Raw Data Sets

The raw data set from AFMs measurement are used al-
though some post-processing steps could be done within
the measurement software. This is because these steps
must be done very accurately and in correlation with the
following device simulation steps for a detailed investiga-
tion. ASBuilder was developed with these considerations
in mind. Figure 2 shows an output of the measurement
software.

Figure 2: Two-dimensional height distribution of the AFM
measurement, (left: 7nm, middle: 15 nm, right: 50 nm).

To enhance the raw data set ASBuilder can filter the data
set with different options designed to compensate for
different effects encountered during the measurement[1].

- Piezo drift
Due to heating of the AFM tip during the measure-
ment period the piezo crystal drift results in an z-
offset of the measured data set. Within ASBuilder
this piezo drift can be recomputed and compen-
sated.

- Fast-scan-line noise
To reduce fast-scan-line noise a discrete Fourier fil-
ter is used to suppress this kind of noise.

- Spike filtering
To filter noise spikes gauss filters with different ker-
nels can be applied within ASBuilder.

Further Processing of Data Sets

For further processing ASBuilder creates a surface tri-
angulation of the corrected and adjusted height distri-
bution. In order to accomplish this ASBuilder reads
in the height distribution data set, corrects the data
set and assembles a two-dimensional height distribu-
tion matrix. From this matrix an unstructured two-
dimensional mesh is generated where the data set is
meshed (ASBuilder) with a so called height-map mesh-
ing step where the height distribution is triangulated
and elevated into three dimensions. The result can be
seen in Figure 3.

The histograms of the height distributions presented in
Figure 4 show the characteristics of the three different
oxides. Here the 7nm oxide has the flattest distribution
which means that the surface roughness is equally dis-
tributed between the complete range of 6 nm to 8 nm.
The presumably high fluctuations of the 15 and 50 nm
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Figure 3: A detailed view of the height distribution (top:
7nm, middle: 15nm, bottom: 50 nm).

oxide are insignificant when compared to the overall
thickness of the oxide, while the same does not hold
for the 7nm oxide.
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Figure 4: Histograms of the height distributions.

Building the Three-Dimensional Simulation

Structures

To investigate oxide reliability in detail the prepared
and triangulated surfaces of the oxides are meshed by
ASBuilder [2] into a three-dimensional object with a bot-
tom and top metallic contact.



Contact 1

Contact 2

Figure 5: Three-dimensional oxide structure.

With this pre-processing steps of ASBuilder a completely
three-dimensional object with the non-planar oxide ele-
ment and two planar contacts is created which can be
used as input data for any existing device simulation
software such as Minimos-NT [3] to calculate the elec-
tric field distribution required for the modeling of FN
tunneling.

SIMULATION METHODOLOGY

After the extensive preparations outlined above several
simulation steps need to be performed. First, the elec-
tric field distribution is calculated. The results of the
three-dimensional electric field calculation are shown in
Figure 6 and 7. Figure 6 depicts the absolute values of
the electric field, while Figure 7 shows a cut through
the three-dimensional simulation domain. Both figures
illustrate the influence of the encountered surface rough-
ness on the electric field. The field clearly shows peaks
in the regions of thinner oxide inducing heightened elec-
trical stress in these regions.
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Figure 6: Results of a three-dimensional simulation of the
electric field distribution for a 50x50nm? region of a 7nm
oxide. The values of the electric field are in V/cm.

Due to the thickness of the oxides and the strong electric
fields the leakage current is modeled as FN tunneling
current. It is evaluated using the previously determined
electric field distribution. The FN tunneling current is
modeled by the well known expression [4, 5]

J=al|E?exp (—%).
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Figure 7: Cut through the simulation domain of a
50x50 nm? region of a 7nm oxide.

The parameters a = 994.63 x 1072A/V? and b =
2.64 x 10'°V/m were calibrated for the non-planar case
of each oxide thickness and then used in the subsequent
simulations.

COMPARISON OF THE MEASURED LEAK-
AGE CURRENTS

The area below the 50 nm oxide is ohmically connected
to the bulk of the wafer, while the areas corresponding
to the thinner oxides are insulated by pn-junctions. The
measured structures are schematically presented in Fig-
ure 8 for the 50 nm oxide and in Figure 9 for the 7 and
15nm oxides. This explains the differing noise levels
visible in the measurement data (Figure 1) as the mea-
surements of the 7 and 15nm oxides also include noise
from this junction.
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Figure 8: Structure of measurement arrangement (50 nm).

Figure 9: Structure of measurement arrangement (7nm
and 15nm).

The measured data includes several effects that com-
plicate the analysis. The flatband voltage is one such
interference within this measurement. The pn-junctions



included in the 7 and 15nm structures contribute an-
other parasitic effect within the measurement. Both of
these effects need to be taken into account in order to
enable a correct modeling of the leakage current. Figure
10 shows the influence of the flatband voltage. While the
influence on the 50 nm oxide is marginal, there is a signif-
icant impact for the thinner oxides. The compensation
of the influence of the pn-junctions on the thinner oxides
is shown in Figure 11. Again the influence is larger for

smaller oxide thicknesses.
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After amending for these effects the measurement curves
almost overlap as can be observed in Figure 13. This is
an indication of a common mechanism of the leakage

current which is readily found in FN tunneling.
SIMULATION RESULTS

After considering the flatband voltage, the pn-junction
voltage and the previously determined correction volt-
ages the regions depicted in Figure 1 overlap, as can
be seen in Figure 13, and can then be simulated with
the FN tunneling model. The result obtained from this
simulation is also depicted in Figure 13. The agreement
between the measured leakage current and the simula-
tion result is excellent. Using the parameters obtained
from the non-planar case, a simulation with planar sur-
faces is performed as well. This is done by calculating
the average height of the oxide from the distribution and
assuming a parallel plate capacitor. This corresponds to
an effective thickness extracted from CV measurements.
The results of this computation is shown in Figure 12.
As expected the non-planar curves overlap. The dis-
crepancy between the planar and non-planar case in-
creases with decreasing oxide thickness. This indicates
that the relative roughness is responsible for this devi-
ation which, as already stated above, increases as the
oxide thickness is reduced. From this it is evident that
non-planar effects are increasingly important as oxide
thicknesses shrink. From the comparison of the fully
three-dimensional and the planar simulations correction
voltages can be derived.

The observed tunneling current is not only important
for the overall power consumption of devices but also
for the reliability of the devices [4], as the tunneling
charge carriers are responsible for damaging the oxide
and deteriorating the performance of the device.

CONCLUSION

Due to the growing complexity of the structures of mod-
ern semiconductor devices and the ongoing shrinking to
smaller dimensions, device simulations in two dimen-
sions are no longer sufficient because of dominant three-
dimensional effects. This is especially true for oxide
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Figure 10: Comparison of the original data set and the
corrected set obtained by inclusion of the flatband voltage.
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Figure 11: Comparison of the original data set and the
data corrected by the pn-junction.

properties due to the reduction of oxide thickness to
only a few atomic layers.

In particular we have shown that by considering only
the effective oxide thickness obtained for instance from
CV measurements the estimated FN currents are signif-
icantly underestimated due to the non-planarity of the
oxide. This effect increases for decreasing oxide thick-
nesses and has to be considered for oxide reliability con-
siderations.
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Figure 12: Comparison of the influence of three-

dimensional surface roughness effects.
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Figure 13: Final simulation compared to corrected mea-
surement data sets.
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