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Abstract— An overview of models for the simulation

of current transport in micro- and nanoelectronic devices

within the framework of TCAD applications is presented.

Modern enhancements of macroscopic transport models

based on microscopic theories are specifically addressed.

This comprises the inclusion of higher-order moments into

the transport models, the incorporation of quantum cor-

rection and tunneling models up to dedicated quantum-

mechanical simulators, and mixed approaches which are

able to account for both, quantum interference and scat-

tering. Specific TCAD requirements are discussed from an

engineer’s perspective and an outlook on future research

directions is given.

I. INTRODUCTION

The impressive increase in computational performance

and speed of integrated circuits in the past decades has

been mostly enabled by the aggressive size reduction of

microelectronic devices. This trend is expected to continue

in the coming decade as it is institutionalized by the Interna-

tional Technology Roadmap for Semiconductors [1]. Today,

when the 90 nm technology node with physical transistor

gate lengths in the range of 40 nm is in mass production

and the 6 nm gate length transistor has been demonstrated

in research labs [2], [3], the device engineers are facing the

challenge to introduce the 65 nm technology node already

in a year. New technology nodes are introduced every 3

years, with a long-term projection of the 22 nm node to be

in production by the year 2016.

Technology CAD (TCAD) tools are designed to assist

in development and engineering at all stages ranging from

process simulation to device and circuit analysis. Due to the

aggressive downscaling of device feature sizes, inaccuracies

of presently applied TCAD tools based on semiclassical

macroscopic transport models appear. The origin of these

inaccuracies stems from the non-local nature of carrier

propagation in ultra-scaled devices [4]. The non-local ef-

fects may be of classical or quantum-mechanical nature,

depending on the underlying microscopic physics relevant

to the transport process. Classical non-localities appear

when the mean-free path is getting comparable to the device

feature size. In this case hot carrier effects are becoming
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important. Quantum mechanical non-local effects start to

determine the transport properties when the device size is

of the order of the De-Broglie electron wave length. Size

quantization of carrier motion in surface inversion layers of

MOSFETs and in ultra-scaled multi-gate devices as well as

the tunneling current including gate leakage are the most

important examples of quantum effects in MOSFETs.

Fig. 1 shows the hierarchy and mutual interrelation of

current transport models presently used for device mod-

eling. Semiclassical transport models are based on the

Boltzmann equation which includes scattering integrals

describing realistic microscopic processes. These purely

classical models, augmented with quantum corrections, are

still of great importance due to their relative simplicity,

computational robustness, and an ability to provide reason-

able quantitative results within seconds even for devices

with gate length as short as 50 nm. They may serve well

for engineering and optimization of 90 nm node devices.

A brief overview of the currently developed semiclassical

transport models will be presented in Section 2.

Quantum ballistic transport models describe a coherent

propagation of carriers. They are based on the solution of

the Schrödinger equation for the wave function, supple-

mented with the corresponding boundary conditions. This

approach is efficient and provides accurate results when

carrier scattering is irrelevant and can be neglected. The

method will be illustrated in Section 3 by an example of

transport in carbon nanotubes where transport is coher-

ent [5].

Finally, quantum transport theory represents the full

quantum-mechanical description, which combines the co-

herent carrier motion between scattering with the coherence

(or phase) breaking due to carrier scattering. Different

formalisms are currently used, based on the Dyson equation

for the non-equilibrium Green’s functions, the quantum

Liouville/von Neumann equation, or the Wigner transport

equation. Section 4 deals with quantum transport character-

ized by both scattering and quantization. A conclusion will

summarize the main findings and give directions for future

research.

II. SEMICLASSICAL TRANSPORT

After the ground-breaking work of Scharfetter and Gum-

mel [6], who first proposed a robust discretization scheme

for the drift-diffusion equation, computer programs like
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Fig. 1. Hierarchy of transport equations in semiconductor current transport modeling.

Minimos [7] and Pisces [8] played a pioneering role in

numerical simulations of current transport properties of

semiconductor device engineering. Since then, numerous

transport models of increasing complexity have been in-

troduced. The semiclassical transport description is based

on the Boltzmann equation for the distribution of carriers

f(r,k, t) in the point (r,k) of phase space

∂f

∂t
+ v · ∇rf −

qE

~
· ∇kf =

(

∂f

∂t

)

coll

, (1)

where the collision integral on the right-hand side describes

carrier scattering due to phonons, impurities, interfaces,

or other scattering sources. Although the solution of the

Boltzmann equation can be found numerically by means of

Monte Carlo (MC) methods, TCAD models based on mo-

ments of the distribution function f(r,p, t) are highly de-

sirable. Being computationally significantly less expensive

than the MC method, these higher-order moments methods

provide a reasonable quantitative answer for devices as

short as 50 nm within seconds. The reason for good results

stems from the fact that the higher-order moments models

already take into account a deviation of f(r,k, t) from the

Maxwellian distribution. Multiplying (1) with kn on both

sides and integrating it over k, an infinite set of differential

equations relating moments of different order n

〈kn〉 =
1

4π3

∫

kn f(r,k, t) d3k (2)

is obtained. By assuming the cold Maxwellian distribution,

the second moment is only expressed via the moments of

a lower order and one obtains a closed set of equations

relating the density to the current, which is the famous drift-

diffusion model. The fairly new six moments model [9]

naturally takes into account hot-carrier effects such as

avalanche generation, hot carrier induced gate currents, or

hot-carrier diffusion, which typically take place in a Silicon-

On-Insulator (SOI) floating body MOSFET. The full-band

MC method is often accepted as a calibration tool , since

it can precisely account for the various scattering processes

in the scattering operator [10]. Fig. 2 shows a comparison

of different macroscopic simulation approaches with the

microscopic full-band MC results for a 250 nm and a 50 nm

double-gate MOSFET [11]. While the transport models

based on two, four, and six moments give similar results

for the long-channel classical device, only the six moments

model is able to capture the classical non-local effects in

50 nm gate length devices and to reproduce the full-band

MC result.

Another important development of transport models is

related to the MC method for solving the Boltzmann

equation. Kurosawa in 1966 [12] is considered to be the

first who applied the MC method to simulate the transport

in semiconductor. Later the significantly improved MC

method was successfully applied to transport description in

a variety of semiconductors [13]. For electrons in silicon,

the most thoroughly investigated case, it is believed that

a satisfactory understanding of the band structure and of

the basic scattering mechanisms has been achieved giving

rise to a “standard model” [14]. Nowadays, an accurate

MC evaluation of carrier transport properties in surface

inversion layers is of primary importance for improving

performance of modern CMOS bulk devices. Due to the

strong confinement of carriers in the inversion layer of bulk

MOSFETs or due to the geometric confinement in modern

multi-gate FETs the carrier motion is getting quantized in

the confinement direction giving rise to the formation of

quantum subbands. One possibility to address the quantum

effects due to confinement is to use an effective potential

instead of the solution of the Poisson equation in the three-

dimensional MC simulation. This can also be achieved by

a convolution of the electrostatic potential with a Gaussian

function, which leads to a smoothing of the original po-

tential [15], [16], [17]. Another option is to use the self-

consistent Poisson-Schrödinger-based quantum corrected

potential [18], [19]. These approaches combine advantages
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Fig. 2. Comparison of macroscopic transport models with full-band Monte
Carlo [11]. While all models yield similar results at large gate lengths, only
the six-moments model reproduces the short-channel Monte Carlo results.

of full-band structure and flexibility of scattering processes

of three-dimensional classical MC simulations with the gen-

erality of material composition and transport peculiarities

due to quantum confinement and strain effects. The MC

approach may also be modified to incorporate the quantized

character of carrier motion in the direction orthogonal to

the current exactly. Although in this case the quantum

nature of motion in the confined direction can only be

addressed via the solution of the corresponding Schrödinger

equation, the carrier motion within each subband may

still be considered classical and therefore can be well de-

scribed by the corresponding Boltzmann equation. Because

of possible carrier transitions between different subbands

due to scattering, the collision integrals on the right-hand-

side of the Boltzmann equation must be augmented with

terms describing the intersubband scattering processes. The

transport in the inversion layer of ultra-scaled MOSFETs is

finally described by the set of Boltzmann equations within

each subband, coupled to each other via the intersubband

scattering integrals. The set of the subband Boltzmann

equations is conveniently solved with the MC methods. This

approach therefore combines the advantages of the exact

quantum subband description in confinement direction with

the classical transport description in transport direction and

represents a transition between purely classical and quantum

description. An example of the simulation of the low-field

surface mobility in inversion layers of silicon, when the

transport in the current direction may be treated classically

is shown in Fig. 3, together with the experimental “universal

mobility” curve [20]. In order to reproduce the universal

mobility curve, up to 40 unprimed and 20 primed subbands

were taken into account, with realistic electron-phonon and
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Fig. 3. Comparison of subband MC simulations with the experimental [20]
universal mobility of surface layer in silicon. Deviation of experimental
mobility from simulations at low effective fields is due to Coulomb
scattering not included in MC simulations.

surface roughness scattering included.

III. QUANTUM-BALLISTIC TRANSPORT

With the aggressive downscaling of MOSFET dimensions

continuing, the classical description of carrier motion in

transport direction is also gradually loosing its validity.

When the characteristic scale of the potential variation

along the channel is getting comparable to the carrier De-

Broglie wave length, a TCAD model which includes the

quantum effects in transport direction must be developed. If

dissipative scattering processes can be ignored and particle

propagation in the device is coherent, the carrier motion

is determined by the solution of the Schrödinger equation,

supplemented with open boundary conditions. In order to

determine the current density J , it is enough to know the

transmission coefficient TC(E) between the source and

drain electrodes as well as the supply function N(Ex) from

the electrodes:

J =
4πmeffq

h3

∫ Emax

Emin

TC(Ex)N(Ex) dEx. (3)

A similar approach can also be used to determine the

gate leakage current [21]. The solution of the Schrödinger

equation with open boundary conditions can be achieved by

means of the quantum transmitting boundary method [22],

[23]. An established alternative framework for these calcu-

lations is the non-equilibrium Green’s Function method [24]

in its reduced coherent version. It is conveniently used for

one-dimensional studies of resonant tunneling diodes [25],

[26] or carbon nanotubes. Recently, simulators accounting

for a full two-dimensional solution of the open-boundary
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Schrödinger equation have been reported and applied to the

simulation of 10 nm double-gate MOSFETs [27], [28].

It may appear that in the quantum-ballistic case the

knowledge of the full solution of the Schrödinger equation

is not necessary and the knowledge of the transmission

coefficient is enough for the current calculations. However,

the carriers are charged, and their density alters the electro-

static potential in the device via the Poisson equation. The

carrier density is proportional to the square of the wave

function, so the accurate determination of the transmission

coefficient and the current requires a self-consistent solution

of the Schrödinger and Poisson equation simultaneously.

For quasi-one dimensional transport this can be achieved

straightforwardly [29], while the self-consistent solution of

the two- or three-dimensional Schrödinger equation together

with the Poisson equation represents a computational chal-

lenge [27]. Two- and three-dimensional quantum ballistic

simulations can be performed by means of an approximate

separation of the quantum motion in the confinement di-

rection y from the motion along the current direction x
by means of the following ansatz for the wave function

Ψn(y, x):

Ψ(x, y) =
∑

n

ξn(x)ψn(y, x). (4)

At discrete positions x, the subband wave functions

ψn(y, x) are calculated independently from the Schrödinger

equation. The transport in the current direction is char-

acterized by the system of one-dimensional Schrödinger

equations with open boundary conditions for the wave

functions ξn(x). Each Schrödinger equation describes the

transport inside the particular quantum subband. The quan-

tum transport in each subband is independent from the one

in other subbands, if the subband wave functions ψn(y) do

not depend on the position in x in the transport direction.

The Schrödinger equations describing the transport in each

subband are decoupled from each other, when the potential

U(x, y) in the device is the sum of two contributions,

each depending either on y or x coordinate alone. In a

general case when the subband wave functions depend

on the position x in transport direction, the transport in

the subbands n and m is coupled, with the coupling

described by the Hamiltonian δHnm(x). However, when

the intersubband coupling Hamiltonian δHnm(x) is small

and may be neglected, the transport in the subbands can

still be considered as independent from each other. This

approximation simplifies the calculations and reduces the

computational efforts significantly [30]–[32]. The coupling

Hamiltonian is expected to be small if the dependence of

the subband wave function on x is weak. An example where

the subband decomposition turns out to be an excellent

approximation is the ballistic quantum transport in ultra-

scaled SOI MOSFETs [32].

The quantum-ballistic description is justified if the size

of the channel region is shorter that the phase-breaking

length. In carbon nanotubes, where inelastic scattering can

Fig. 4. Local density of states for the carbon nanotube FET as a result
of the self-consistent solution of the Poisson equation together with the
Schrödinger equation with open boundary conditions [5].

be ignored [33], the transport is coherent and therefore

well described within the quantum-ballistic approach [5].

An example of the self-consistent simulation for the lo-

cal density of states, a quantity proportional to the wave

function square, is shown in Fig. 4. In silicon MOSFETs,

however, the mean-free path at 300 K is only a few nm [34],

and the full quantum description which includes dissipative

processes must be adopted for MOSFETs with gate length

of 10-50 nm. Besides the difficulties of introducing scatter-

ing into the simulators based on the coherent description,

these simulators are often limited to specific geometries, re-

strictive grids, or short length scales, which makes their in-

tegration into the complex modern engineering TCAD tools

problematic. Nevertheless, these simulation approaches are

necessary for the estimation of upper bounds of current

transport at the quantum limit.

IV. QUANTUM DISSIPATIVE TRANSPORT

The methods described so far are either based on the

assumption of pure classical or pure quantum nondissipative

transport. Nevertheless, in modern microelectronic devices

quantum effects are usually dominant in a small active re-

gion connected to large, heavily doped contact areas where

the carrier dynamics is essentially classical. Therefore,

modern TCAD simulators must be able to incorporate both

classical and quantum-mechanical modeling. To a certain

extent, various quantum corrections can account for the

quantum effects, as it was already discussed.

The non-equilibrium Green’s functions method addresses

the problem in the most consistent and complete way. Due

to its completeness, the method is computationally complex

and is usually applied to one-dimensional problems [24], for

a restricted set of scattering mechanisms [35]. The carbon

nanotube FET, which is widely considered to be a potential

alternative to the conventional MOSFET, represents an
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example where the nonequilibrium Green’s function method

provides accurate results and is successfully used.

An alternative approach which handles both quantum-

mechanical and dissipative scattering effects is based on the

Wigner function formalism. Realistic scattering processes

can be easily embedded into the Wigner equation via the

Boltzmann scattering integral. The Wigner function is given

by a transformation of the density matrix [36], [37]

fw(r,k, t) =

∫

ρ
(

r +
s

2
, r −

s

2
, t

)

exp(−ık · s) ds .

The kinetic equation for the Wigner function is the Wigner

transport equation. It is similar to the Boltzmann equation,

with the exception of the extra Wigner potential at the right-

hand side:
(

∂

∂t
+ v · ∇r +

qE

~
· ∇k

)

fw =

∫

Vw(r,k − k′)fw(k′, r, t)dk′ +

(

∂fw
∂t

)

coll

.

(5)

The Wigner potential is defined by

Vw(r,k) =
1

ı~ (2π)3

∫

(

V
(

r +
s

2

)

−

V
(

r −
s

2

))

exp (−ik · s) ds .

(6)

Applying the method of moments to this equation, the

quantum drift-diffusion [38] [39] and quantum hydrody-

namic models [40] [41] can be derived. These models are

more convenient for the implementation in conventional

device simulators than a Schrödinger-Poisson solver which

strongly depends on non-local quantities. However, it was

reported that, while the carrier concentration in the inversion

layer of a MOSFET is reproduced correctly, the method fails

to account properly for tunneling currents [42].

Therefore, a more rigorous approach is desirable to get

advantages from both the most accurate classical device

simulation approaches and from the quantum-mechanical

formulation in Wigner representation. Since the Wigner

function formalism treats the scattering and quantum me-

chanical effects on equal footing through the corresponding

scattering integrals, it is attractive to borrow the well estab-

lished scattering models used in classical MC simulations

and solve the quantum Wigner transport equations (5) by

means of the MC technique. Such a program was recently

realized in [43], [44]. However, since the kernel of the

quantum scattering operator is not positively defined, the

numerical weight of a particle trajectory increases rapidly,

and the numerical stability of a trajectory-based MC al-

gorithm becomes a critical issue. A multiple trajectories

method was recently suggested [44] in order to overcome

the difficulty. In this algorithm the problem of a growing sta-

tistical weight of a single trajectory is addressed by creating

an increasing number of trajectories with constant weights,

which may assume positive and negative values. Being

formally equivalent to the former method, the algorithm
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Fig. 5. Comparison of Wigner and classical Monte Carlo results for
electron concentration in double-gate MOSFET, for different channel
lengths [32].

allows the annihilation of trajectories with similar statistical

properties, introducing a possibility to control the number of

trajectories. This approach has the advantage that a seam-

less transition between classical and quantum-mechanical

regions in a device is possible [44]. Following [45], one

can introduce a spectral decomposition of the potential

profile V (x) into a slowly varying, classical component and

a rapidly varying, quantum mechanical component. This

decomposition is conveniently carried out by applying a

low-pass filter with a cut-off wave number qc ≪ π/∆x,

where ∆x is a grid step size. This separation of the

total potential into a classical and a quantum mechanical

contribution significantly improves the Wigner Monte Carlo

convergence. The method can be applied to the simulation

of resonant tunneling diodes [44], and it was recently used

for the simulation of 10 nm double-gate MOSFETs [32].

V. CONCLUSIONS

Standard classical TCAD tools are gradually loosing their

ability to predict accurately the transport properties in the

MOSFET devices of a few tenths of nm, their enhancement

to meet the engineering demands is needed. A classical six

moments model is able to include the hot-carrier effects

and reproduce results of the full-band MC, while relevant

quantum corrections may be incorporated into different MC

schemes. Still the full quantum description is needed for

ultra-scaled MOSFETs. Contrary to the carbon nanotubes

where the quantum transport is coherent, the quantum

dissipative description may be required for transport cal-

culations in ultra-scaled MOSFETs with the gate length as

short as 10 nm. The Wigner equation approach is attractive,

because it naturally combines the advantages of quantum
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descriptions with the accurate scattering models relevant

for MOSFETs. However, some constraints for engineer-

ing application should be kept in mind. Models must be

efficient: Timely results are more valuable than accurate

analyses [46]. Device simulators must allow a coupling

with process simulators, since a detailed, physics-based

transport model is of no use if geometry and doping are not

described correctly. Therefore, support of unstructured grids

is necessary. Furthermore, the simulators should be general-

purpose and not limited to specific geometries or simulation

modes. It is still not clear which of the outlined quantum

transport approaches will find its way into integrated TCAD

environments, but its further success depends on efficient

and accurate modeling of these new effects.
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