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I. ABSTRACT

Stress induced enhancement of electron mobility has
primarily been attributed to the splitting of the conduc-
tion bands. However, experiments [1] have indicated that
the mobility enhancement cannot solely be attributed
to this effect, and a recent study has shown that a
stress along the (110) direction leads to a change of
the effective mass [2]. This work investigates the effect
of the variation of the effective mass with stress along
(110) direction on the electron mobility. An improved
low-field mobility model incorporating the effective
mass change is presented.

II. INTRODUCTION

The band structure (BS) of Si including the effect
of stress/strain has been calculated using the empirical
non-local pseudopotential method (EPM) [3]. For stress
along (110), the effect of the internal displacement
of the atoms [4] has been taken into account in the
BS calculations. The effective masses for the two-fold
degenerate A,-valleys and the four-fold degenerate A4-
valleys were extracted from the BS data using curve
fitting. Fig. 1 depicts the variation of the two transversal
(my), my1) and the longitudinal (m;) masses for the A,-
valleys as a function of the strain for different values
of the internal displacement parameter, §. The variation
of my, m;1, and m; has been fitted using a quadratic
function of the stress. Fig. 1 shows that there is a
significant change in Am* for increasing strain along
(110) which translates into a mobility variation as
shown in Fig. 2. Also shown in Fig. 3 is the splitting,
Age for biaxially/uniaxially strained Si. It is observed
that biaxial tension is more effective in splitting the
conduction bands than (110) uniaxial tension.

III. MODELING

The mobility tensor for a stress along (110) can
be calculated analytically using an expression proposed
in [5]. It includes the effect of strain-induced splitting of
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the conduction band valleys in Si, inter-valley scattering,
doping dependence and temperature dependence. The
model however assumes a constant m, and m; in Si.
Band structure calculations show that for a uniaxial
tensile stress along (110), the two-fold degenerate A,-
valleys, which are lowered in energy, experience a
change in the effective masses. This results in a pro-
nounced anisotropy of the mobility in the transport
plane (see Fig. 4). For uniaxial compression, however,
there is a negligible change in the effective masses of
the lowered four fold degenerate A4-valleys. We have
therefore extended the model in [5] to account for the
variation of the effective mass of the A,-valleys with
stress for uniaxial tensile stress. This in turn leads to a
modification of the scaled inverse mass tensor i ' (Eq.

(6) in [5]), which is obtained as shown below.
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Here m. and m, denote the average conductivity and
transversal mass respectively. The m, and m,  denote
respectively the transversal masses along (110) and
(110) of the A,-valleys. The mobility tensor thus calcu-
lated using ;' becomes non-diagonal in the principal
coordinate system. Fig. 5 and Fig. 6 show a comparison
of the variation of the electron mobility components
with increasing stress as obtained from Monte Carlo
simulations and the analytical model. A good agreement
is obtained.
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Fig. 1. Effect of the uniaxial (110) tensile strain on the transversal
and longitudinal masses of the A-valleys (§ = 0, 0.53, 1.0).
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Fig. 3.
stress on valley splitting. Strain component in the stressed direction
is plotted.
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Fig. 5. Comparison of electron mobility components obtained

from the MC simulations and the analytical model for uniaxial

(110) compressively strained Si.‘Here my = my
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Fig. 2. Mobility as a function of tensile stress with internal

displacement as a parameter (§ = 0, 0.53, 1.0).
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Fig. 4. Variation of the in-plane mobility with in-plane
angle for uniaxial (110) and (110) tensile stress. solid:
(110) without mass correction; dashed: (110) with mass
correction; dotted: uniaxial (100) stress.
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Fig. 6. Comparison of electron mobility components obtained
from the MC simulations and the analytical model for uniaxial
(110) tensile strained Si.



