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I. ABSTRACT

Stress induced enhancement of electron mobility has

primarily been attributed to the splitting of the conduc-

tion bands. However, experiments [1] have indicated that

the mobility enhancement cannot solely be attributed

to this effect, and a recent study has shown that a

stress along the 〈110〉 direction leads to a change of

the effective mass [2]. This work investigates the effect

of the variation of the effective mass with stress along

〈110〉 direction on the electron mobility. An improved

low-field mobility model incorporating the effective

mass change is presented.

II. INTRODUCTION

The band structure (BS) of Si including the effect

of stress/strain has been calculated using the empirical

non-local pseudopotential method (EPM) [3]. For stress

along 〈110〉, the effect of the internal displacement

of the atoms [4] has been taken into account in the

BS calculations. The effective masses for the two-fold

degenerate ∆2-valleys and the four-fold degenerate ∆4-

valleys were extracted from the BS data using curve

fitting. Fig. 1 depicts the variation of the two transversal

(mt‖, mt⊥) and the longitudinal (ml) masses for the ∆2-

valleys as a function of the strain for different values

of the internal displacement parameter, ξ. The variation

of mt‖, mt⊥, and ml has been fitted using a quadratic

function of the stress. Fig. 1 shows that there is a

significant change in ∆m∗ for increasing strain along

〈110〉 which translates into a mobility variation as

shown in Fig. 2. Also shown in Fig. 3 is the splitting,

∆ε for biaxially/uniaxially strained Si. It is observed

that biaxial tension is more effective in splitting the

conduction bands than 〈110〉 uniaxial tension.

III. MODELING

The mobility tensor for a stress along 〈110〉 can

be calculated analytically using an expression proposed

in [5]. It includes the effect of strain-induced splitting of

the conduction band valleys in Si, inter-valley scattering,

doping dependence and temperature dependence. The

model however assumes a constant mt and ml in Si.

Band structure calculations show that for a uniaxial

tensile stress along 〈110〉, the two-fold degenerate ∆2-

valleys, which are lowered in energy, experience a

change in the effective masses. This results in a pro-

nounced anisotropy of the mobility in the transport

plane (see Fig. 4). For uniaxial compression, however,

there is a negligible change in the effective masses of

the lowered four fold degenerate ∆4-valleys. We have

therefore extended the model in [5] to account for the

variation of the effective mass of the ∆2-valleys with

stress for uniaxial tensile stress. This in turn leads to a

modification of the scaled inverse mass tensor m̂−1
z (Eq.

(6) in [5]), which is obtained as shown below.
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Here mc and mt denote the average conductivity and

transversal mass respectively. The mt‖ and mt⊥ denote

respectively the transversal masses along 〈110〉 and

〈110〉 of the ∆2-valleys. The mobility tensor thus calcu-

lated using m̂−1
z becomes non-diagonal in the principal

coordinate system. Fig. 5 and Fig. 6 show a comparison

of the variation of the electron mobility components

with increasing stress as obtained from Monte Carlo

simulations and the analytical model. A good agreement

is obtained.
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Fig. 1. Effect of the uniaxial 〈110〉 tensile strain on the transversal

and longitudinal masses of the ∆2-valleys (ξ = 0, 0.53, 1.0).
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Fig. 2. Mobility as a function of tensile stress with internal

displacement as a parameter (ξ = 0, 0.53, 1.0).
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Fig. 3. Effect of biaxial tensile strain and uniaxial 〈110〉 tensile

stress on valley splitting. Strain component in the stressed direction

is plotted.
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Fig. 4. Variation of the in-plane mobility with in-plane

angle for uniaxial 〈110〉 and 〈110〉 tensile stress. solid:

〈110〉 without mass correction; dashed: 〈110〉 with mass

correction; dotted: uniaxial 〈100〉 stress.
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Fig. 5. Comparison of electron mobility components obtained

from the MC simulations and the analytical model for uniaxial

〈110〉 compressively strained Si. Here mt‖ = mt⊥.
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Fig. 6. Comparison of electron mobility components obtained

from the MC simulations and the analytical model for uniaxial

〈110〉 tensile strained Si.
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