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Abstract. We consider a physical model of ultrafast evolution of atiahelectron distribution in a quantum wire.
The electron evolution is described by a quantum-kinetieagign accounting for the interaction with phonons. A
Monte Carlo method has been developed for solving the emuaBRID technologies are implemented due to the
large computational efforts imposed by the quantum charadtthe model.

1. Introduction

The Monte Carlo (MC) methods provide approximate solutioresvariety of mathematical problems by perform-
ing statistical sampling experiments on a computer. Theybased on the simulation of random variables whose
mathematical expectations are equal to a given functiditalecsolution of the problem under consideration.

Many problems in a transport theory and related areas caediided mathematically by a second kind integral
equation:

f=IK(f)+¢. 1)

In general, the physical quantities of interest are deteechby functionals of the type:

Jo(f) = (0. f) = /G o) f(z)dz, @

where the domaiit ¢ IR? and a point z € G is a point in the Euclidean spad@?. The functionsf (z) and
g(z) belong to any Banach spaggand to the adjoint spacE*, respectively, and (z) is the solution of (1).

The mathematical concept of the MC approach is based ondifaiite expansion of the solution of (1):

fs=K(fo-1)+ ¢, s=1,2,..., 3
wheres is the number of iterations. In fact (3) defines a Neumanmeseri
fs=0+ K(®)+.. .+ K7 (¢)+ K*(fo), s>1,
where JK* means thes-th iteration of K. In the case when the corresponding infinite series congdtgmn the

sum is an elemenft from the spaceX which satisfies (1).

The Neumann series, replaced in (2), gives rise to a sum cfecortive terms which are evaluated by the MC
method with the help of random estimators. A random varightedefined as a MC estimator for the functional
(2) if the mathematical expectation fs equal taJ(f): E€ = J(f).

Therefore we can define a MC method

N
_ 1 n P
§= 526" — Jl), 4)
i=1
wherecM ... ¢(N) are independent values @hndi means stochastic convergence\as— oco. The rate of

convergence is evaluated by the “law of the three sigmas?2]f1

— Var(§)\ _
P <|§ —Jy(f)l < 3\/N) ~ 0.997.
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HereVar(¢) = E£? — E?¢ is the variance of the MC estimator. Thus, a peculiarity of BIC estimator is that
the result is obtained with a statistical error [1, 2, 3]. sncreases, the statistical error decreases proportionall
to N—1/2,

Thus, there are two types of errors - systematic (a truncaticor) and stochastic (a probability error) [3, 4]. The
systematic error depends on the number of iterations of sied iterative method, while the stochastic error is
related to the the probabilistic nature of the MC method.ni-(t) and (3) one can get the value of the truncation
error. If fo = ¢ then

fs = =IK(¢—[)
The relation (4) still does not determine the computatidn@l algorithm: we must specify the modeling function
(called sampling rule)

© =F((,02,...,), (5)

wheresy, 8o, . . ., are uniformly distributed random numbers in the intef@all). Itis known that random number
generators are used to produce such sequences of numbeysar€tbased upon specific mathematical algorithms,
which are repeatable and sequential. Now both relationar(@)5) define a MC algorithm for estimatioig(f).

The case whep = §(z — x¢) is of special interest, because it is considered for caficigahe value of f atxg,
wherez, € G is a fixed point.

Every iterative algorithm uses a finite number of iteratien practice we define a MC estimatqrfor computing
the functionalJ, (f,) with a statistical error. On the other hagidis a biased estimator for the functiongl( f)
with stochastic and truncation errors. The number of itenatcan be a random variable wheneaaaoriterion is
used to truncate the Neumann series or the correspondinkpWahain in the MC algorithm.

The stochastic convergence rate is approximaflyV —'/2). In order to accelerate the convergence rate of the
MC methods several techniques have been developed. Variadactions techniques, like antithetic varieties,
stratification and importance sampling [2], reduce theararé which is a quantity to measure the probabilistic
uncertainly. Parallelism is an another way to acceleraetmvergence of the MC computationsnlprocessors
executen independent MC computations using non-overlapping ransequences, the accumulated result has a
variancen time smaller than that of a single copy. In our work we use SBRS8lkcalable Parallel Random Number
Generators) library [5] to produce independent randonmastee The numerical results presented in Section 4 are
obtained at the Bulgarian Grid-computing systems that areqf EGEE-GRID [6].

The paper is organized as follows. In Section 2 the quantimatik equation is derived from a physical model
describing electron transport in quantum wires. An intefgran of the equation is obtained by reducing the dimen-
sionality of space and momentum coordinates. The MC methdadarresponding MC algorithm are presented in
Section 3. The numerical results using Grid implementagiendiscussed in Section 4. Summary and directions
for future work are given in Section 5.

2. The Physical Model

We consider a highly non-equilibrium electron distribativhich propagates in a quantum semiconductor wire.
The electrons, which can be initially injected or opticalfgnerated in the wire, begin to interact with three-
dimensional phonons. The direction of the wire is choseneta,lthe corresponding component of the wave
vector isk,. The electrons are in the ground stdté- | ) in the plane normal to the wire, which is an assumption
consistent at low temperatures. In general, an electrid Retan be applied along. Here we consider the case
F=0.

The equation the relevant for the evolution process is detdy a first principle approach in terms of the electron
Wigner functionf,,.

fw(Z,kz,t) :fw()(z_%takz)"_ (6)
v fadt” [N dt [ PR K (e, K ) fu (2 Bk, gLt 8 E7), KL, 7))
v yat” fhdt [ PR Ko (ks K ) fu (24 h(ks, @byt 8 87), Koy t)),

where

hk,

h !
h(k.,q.,t,t',t") = —W(t -t + Q—sz(t’ —t",

Kl(kmk/at/at”) = S(k;w kz,t/at”aqu_) = _KQ(k/’ kmt/»t//)v
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2V

S(hzoker ", d1) = (5 3 1G(AL) FldL, s — k)P
|: (n(q/) + 1) cos (E(kz) — G(FI;/Z) + hwq’ (t/ _ t//))
+n(q’) cos (e(kz) - G(slz) — hwy (t' — t//))]

where [, d®°k’ = [dq/, ff?éz dk. and the domair? is specified in the next section. The phonon distribution
is described by the Bose function,: = 1/(exp(fhiwg /KT) — 1) with K the Boltzmann constant arid is the
temperature of the crystalwy is the phonon energy which generally dependgos o', +¢, = q'| + (k. — k),
ande(k.) = (h*k2)/2m is the electron energy. The electron-phonon coupling emst is chosen according to
a Fohlich polar optical interaction:

) o 2me2wey 1 L%
Fdy ke — k) = [ RV \ew es/)(q)?] “

(es0) @and(e,) are the optical and static dielectric constar®q’, ) is the Fourier transform of the square of the
ground state wave functigi|?.

The equation describes electron evolution which is quanituinoth, the real space due to the confinements of the
wire, and the momentum space due to the early stage of theaglgzhonon kinetics. The kinetics resembles the
memory character of the homogeneous Levinson or BarkeyFeydels [7, 8], but the evolution problem becomes
inhomogeneous due to the spatial dependence of the irdtiaitton f,,o. The cross-section of the wire is chosen
to be a square with sideso that:

/ 2 __ / /N2 477—2 Qsinza’
G = GG = (o ) <qM@>(%a«

We note that the Neumann series of integral equations of (§peonverges, [9]. Thus, we can construct a MC
estimator to evaluate suitable functionals of the solution

47
q,a)

2
2

12 /
5 —4772)> 4 sin”(aq,, /2)

3. TheMonte Carlo Method

The values of the physical quantities are expressed by tlesvfog general functional of the solution of (6):

T
Jg(f)z(g,f)z/o /Dg(z,kz,t)fw(z,kz,t)dzdkzdt. (8)

Here we specify that the phase space ppint ) belongs to a rectangular domdih= (—Q1, Q1) X (—Q2, Q2),
andt € (0,7). The functiong(z, k., t) depends on the quantity of interest. In particular, we fanushe Wigner
function (6), the wave vector (and respectively the enefdy), t), and the density distribution(z, t). The latter
two functions are given by the integrals

fk.,t) = ;l—;fw(z, k., t); n(z,t) = /%fw(z,kz,t). (9)

The evaluation is performed in fixed points by choosjiig, &, t) as follows:

(1) g(z, k. t) =0(2 —20)0(k, — k2,0)0(t — to),

(1) g(z, kart) = %5(1% e 0)S(t —to), (10)

(131) g(z, ks t) = %6(;2 — 20)0(t —tp).

We construct a biased MC estimator for evaluating the foneti (8) using backward time evolution of the numer-
ical trajectories in the following way:

g(Z, kzat)

(z, k2, t) 5 o
ponCehopy V0wl ke 0) + anuzy> (11)

&[Ig ()] = Din (2, pin(z, k2, t) t)
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where
! ! H
f ( | , ) _ fw (Z+h’(kz,j—lvqf,jatj—htgwtj)?kz,jatj) ) If azlv
T Jw (24 hkzjo1, @ ot U, t5) ke, ty) , ifa=2,

Ka(kzjflak t t)

VRRS R
1pozptr(kj—1akjat]at )

The probabilitiey,,, (¢« = 1,2) are chosen to be proportional to the absolute value of theekein (6). The
initial density p;,,(z, k.,t) and the transition density;,.(k,k’,#,¢") are chosen to be tolerdnto the given
function g(z, k., t) and the kernels, respectively. The first pafnatk., to) in the Markov chain is chosen us-
ing the initial density, wheré:., is the third coordinate of the wave vectks. Next points(k.;,t},t;) €
(—Q2,Q2) x (tj,tj—1) x (0,t;_1) of the Markov chain:

W]f" = W]f’:

R W(gy:WO:l, a:1,27 j:l,...,S

(kzo,to) = (ka1 ty,t1) — oo = (ko thity) = oo = (kagy st ts), 5= 1,2,...8
do not depend on the positiarof the electrons. They are sampled using the transitionigens (k, k', ¢',¢") as

we take only thek.-coordinate of the wave vectér. Note the timet; conditionally depends on the selected time
t;. The Markov chain terminates in timg < e;, wheree; is a fixed small positive number called a truncation
parameter. In order to evaluate the functional (8)Xoyndependent samples of the estimator (11), we define a
Monte Carlo method

N
Z i L Ty (£9) = Jg(f). (12)

f(s) is the iterative solution obtained by the Neumann serie§)fgnds is the number of iterations. In order
to obtain a MC computational algorithm, we have to specigyitiitial and transition densities. Also, we have to
describe the sampling rule needed to calculate the states darkov chain by using SPRNG library.

We note the MC estimator is constructed using the kernelee&guation (6). That is why we suggest the tran-
sition density function to be proportional of the term (7atteontains the singularity, namely;, (k, k', t',t") =

p(k' /k)p(t, ', "), where
") = D) = 4 e B0 K) = /(K 1P

c1 is the normalized constant. Thus, if we knowthe next timeg” andt’ are computed by using the inverse-
transformation rule. The functiop(k’/k) is chosen in spherical coordinatés 6, ¢), in the following way:
p(k'/k) = (47)1(p) 2l(w)~!, wherew = (k' — k)/p, p = |k’ — k| andi(w) is distance in the direction of
the unit vectorw from k to the boundary of the domaid. If G is a sphere with radiug-, the functionp(k’/k)
satisfies the condition for a transition density. Indeed,

/C.;p(k’/k)d‘gk/ = %(47r)’1dw /Ol(W)l(w)ldr’ =1.

Thus, if we know the wave vectdrthe next staté&’ can be computed by the following sample rule:
Algorithm :

1. Samplea random unit vectav = (sin 6 cos , sin @ sin ¢, cos ) assin 6 = 2/ (81 — ($7), cos = 23; — 1,
andy = 27, where; andbetay are uniformly distributed numbers {0, 1);

2. Calculatel(w) = —w -k + (Q% + (w- k)2 —k?)2, wherew - k means a scalar product between two vectors;
3. Sample p = l(w)S3, wheress is an uniformly distributed number ifd, 1);
4. Calculatek’ = k + pw.

The choice ofp;,.(z, k., t) depends on the choice of the functig(x, k., t) in (10). Thus, by using common
Markov chains the desired physical quantities (values @Miligner function, the energy and the density distribu-
tions) can be evaluated simultaneously.

1r(z) is tolerant ofg(z) if r(x) > 0 wheng(x) # 0 andr(z) > 0 wheng(z) = 0.
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Figure 1. The users submit their jobs usitgser Interface(Ul) to Resource Broke{RB).
The Computing Elemen(iCE) receives the jobs and controls their execution onftbeker
Nodeg(WNS).

4. Grid implementation and numerical results

The stochastic error for the (homogeneous) Levinson orddfkrry models has ordex(exp (cot) N~1/2), where

t is the evolution time and; is a constant depending on the kernels of the obtained guakinetic equation [9,
10]. Using the same mathematical techniques as in [9], weoare that the stochastic error of the MC estimator
under consideration has ordeexp (c5t?) N~1/2). We obtain the term? in the factorexp (cst?) because the
gquantum kinetic equation (6) contained twice integratiarttee evolution time. Thus, in our inhomogeneous case
the estimate is worse than in the homogeneous one. The &stainaws that whenis fixed andN — oo the
error decreases, but for larg¢he factorexp (03t2) looks ominous. Therefore, the MC algorithm described above
solves anV P-hard problem concerning the evolution time. The suggestedrtance sampling technique, which
overcomes the singularity in the kernels, is not enough beesthe problem for long evolution time with small
stochastic error. In order to decrease the stochastic edrave to increas& - the number of Markov chain
realizations. For this aim, a lot of CPU power is needed fbiedng acceptable accuracy at evolution times above
100 femtoseconds.

It is known that the MC algorithms are perceived as companatly intensive and naturally parallel [11]. They
can usually be implemented via the so-called dynawaig-of-workmodel [12]. In this model, a large MC task is
split into smaller independent subtasks, which are thenwtrd separately. Then, the partial results are collected
and used to assemble an accumulated result with smallemearithan that of a single copy. The inherent char-
acteristics of MC algorithms and the dynarbiag-of-workmodel make them a natural fit for the Grid-computing
environment.

By using the Grid environment provided by EGEE project masldire?, we were able to reduce the computing
time of the MC algorithm under consideration. The simulagiof the Markov chain are parallelized on the Grid by
splitting the underlying random number sequences from BRRNSS library. We divided the MC task into a number
of subtasks and submitted them to the EGEE [6] computatigridl by thetask-split serviceand utilized the
grid’s Workload Management Servi¢ealled alsoResource BrokefRB) in EGEE) to dispatch these independent
subtasks to different nodes among EGEE sites (computetectygsee Figure 1). Theonnectivity serviceare

2The Enabling Grids for E-sciencE (EGEE) project is fundedti®y European Commission and aims to build on recent advanceilin g
technology and develop a service grid infrastructure wiscvailable to scientists 24 hours-a-day. The project aingsdvide researchers in
both academia and industry with access to major computing ressundependent of their geographic location. The EGEBept identifies
a wide-range of scientific disciplines and their applicasi@and supports a number of them for deployment. To date therfivardifferent
scientific applications running on the EGEE Grid infrastane. For more information see http://public.eu-egee.org/.
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Figure 2: The Wigner function solution ats0 f s presented in the planex k.. A window
in the z domain is chosen for a better resolution.

provided using thgridftp protocol. The execution of a subtask takes advantage &ttirage Elements store the
executable, intermediate results, and to store each ssfaml (partial) result. When the subtasks are done, the
RB andLogging and Bookkeeping Serviaee used to collect the information about the results, aed thetask-
gathering servicgets the results of the successfully executed subtaskstagkesplit servicandtask-gathering
servicehave been prepared by using the SQL language. In our res¢taediC algorithm has been implemented
in C language. Successful tests of the algorithm were perforandde Bulgarian EGEE Grid sites using the
Resource Broker at BGO1-IPP Grid site. The BGO1-IPP Grigl wiis also used for the computations, because
it has 21 Worker Nodes with 2.8 GHz Pentium IV CPUs. The MPIllanmgentation was MPICH 1.2.6, and the
execution is controlled from the Computing Element via tbejlie batch system.

The numerical results presented in Figures 2-4 are obtdarezkro temperature and GaAs material parameters:
the electron effective mass is 0.063, the optimal phonorggrie 36 meV, the static and optical dielectric constants
arees, = 12.9 ande,, = 10.92. The initial condition is a product of two Gaussian disttibas of the energy and
space. Th&? distribution corresponds to a generating laser pulse witex@ess energy of about 150 meV. The
distribution is centered around zero. The side of the widh@sen to bd0 nanometers.

The solutions of the Wigner functiofi(z, k., t) are estimated in a rectangular dom&inQ;.Q1) x (—Q2, Q2),
where@; = 400 nm and@, = 0.66nm ™! consisting of800 x 260 points. The solution foi 50 femtoseconds
evolution time is shown in Figure 2. Figure 3 demonstratesptocess of energy relaxation described by the
quantityk, f (k.,t). The electron density distribution along the wire is showrFigure 4 for150 femtoseconds
evolution time.

The timing results for evolution time= 100 femtoseconds are shown in Table 1. The parallel efficiencloise
to 100%.
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Figure 3: Energy relaxation of the highly non-equilibrium initial mdition. At7T = 0
classical electrons form exact replicas of the initial dood towards low energies. The
quantum solution shows broadening of the replicas. Elastappear in the classically for-
bidden region above the initial condition. Here the vareaatthe solution for 175 fs is still
high with respect to the solutions for shorter times, olgdiwith the same computational
efforts.

5. Conclusion

A quantum-kinetic model for the evolution of an initial efiemn distribution in a quantum wire has been intro-
duced in terms of the electron Wigner function. The physigadntities, expressed as functionals of the Wigner
function are evaluated within a stochastic approach. Theldped MC method is characterized by the typical for
guantum algorithms computational demands. The stochzsiimnce grows exponentially with the evolution time
and requires implementation of GRID technologies. The E@Eid environment has been used to test the MC
algorithm on MPI-enabled Grid sites. The test results shogekent parallel efficiency. The next phase of our
research will be to obtain results for larger evolution tintleat require more computational power. This means
that the MC algorithm should run on larger sites or on several sites in parallel. Also, the modeling of electron
transport in a quantum wire should be investigated in cas@ afpplied electric field.
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Table 1: The CPU time (seconds) for &0 x 260 points, the speed-up,
and the parallel efficiency. The number of the Markov chaimusations
is N = 100000. The evolution time is 100 fs.

Number of CPUs CPU Time (s) Speed-up Parallel Efficiency

2 9790 - -
4 4896 1.9996 0.9998
6 3265 2.9985 0.9995

Physical Modelling 13-7



Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

10 T T T 1) T

T T

solution
initial

ballistic ---------

1+

0.1

0.01

0.001

le-04

1le-05

1e-06

150 fs electron density [a.u.]

1le-07

1e-08

le_og 1 :I 1 E 1 : 1
-400 -300 -200 -100 0 100 200 300 400

z-position [nm]

Figure 4: Electron density along the wire after 150 fs. The ballisticve outlines the
largest distance which can be reached by classical electidre quantum solution reaches
larger distances due to the electrons scattered in thead#iggorbidden energy region.
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