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Abstract. We consider a physical model of ultrafast evolution of an initial electron distribution in a quantum wire.
The electron evolution is described by a quantum-kinetic equation accounting for the interaction with phonons. A
Monte Carlo method has been developed for solving the equation. GRID technologies are implemented due to the
large computational efforts imposed by the quantum character of the model.

1. Introduction

The Monte Carlo (MC) methods provide approximate solutionsto a variety of mathematical problems by perform-
ing statistical sampling experiments on a computer. They are based on the simulation of random variables whose
mathematical expectations are equal to a given functional of the solution of the problem under consideration.

Many problems in a transport theory and related areas can be described mathematically by a second kind integral
equation:

f = IK(f) + φ. (1)

In general, the physical quantities of interest are determined by functionals of the type:

Jg(f) ≡ (g, f) =

∫

G

g(x)f(x)dx, (2)

where the domainG ⊂ IRd and a point x ∈ G is a point in the Euclidean spaceIRd. The functionsf(x) and
g(x) belong to any Banach spaceX and to the adjoint spaceX∗, respectively, andf(x) is the solution of (1).

The mathematical concept of the MC approach is based on the iterative expansion of the solution of (1):

fs = IK(fs−1) + φ, s = 1, 2, . . . , (3)

wheres is the number of iterations. In fact (3) defines a Neumann series

fs = φ + IK(φ) + . . . + IKs−1(φ) + IKs(f0), s > 1 ,

whereIKs means thes-th iteration ofIK. In the case when the corresponding infinite series converges then the
sum is an elementf from the spaceX which satisfies (1).

The Neumann series, replaced in (2), gives rise to a sum of consecutive terms which are evaluated by the MC
method with the help of random estimators. A random variableξ is defined as a MC estimator for the functional
(2) if the mathematical expectation ofξ is equal toJ(f): Eξ = J(f).

Therefore we can define a MC method

ξ =
1

N

N
∑

i=1

ξ(i) P−→ Jg(f), (4)

whereξ(1), . . . , ξ(N) are independent values ofξ and
P−→ means stochastic convergence asN −→ ∞. The rate of

convergence is evaluated by the “law of the three sigmas”, [1, 2]:

P

(

|ξ − Jg(f)| < 3

√

V ar(ξ)√
N

)

≈ 0.997.
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HereV ar(ξ) = Eξ2 − E2ξ is the variance of the MC estimator. Thus, a peculiarity of any MC estimator is that
the result is obtained with a statistical error [1, 2, 3]. AsN increases, the statistical error decreases proportionally
to N−1/2.

Thus, there are two types of errors - systematic (a truncation error) and stochastic (a probability error) [3, 4]. The
systematic error depends on the number of iterations of the used iterative method, while the stochastic error is
related to the the probabilistic nature of the MC method. From (1) and (3) one can get the value of the truncation
error. If f0 = φ then

fs − f = IKs(φ − f).

The relation (4) still does not determine the computationalMC algorithm: we must specify the modeling function
(called sampling rule)

Θ = F (β1, β2, . . . , ), (5)

whereβ1, β2, . . . , are uniformly distributed random numbers in the interval(0, 1). It is known that random number
generators are used to produce such sequences of numbers. They are based upon specific mathematical algorithms,
which are repeatable and sequential. Now both relations (4)and (5) define a MC algorithm for estimatingJg(f).
The case wheng = δ(x − x0) is of special interest, because it is considered for calculating the value of f atx0,
wherex0 ∈ G is a fixed point.

Every iterative algorithm uses a finite number of iterationss. In practice we define a MC estimatorξs for computing
the functionalJg(fs) with a statistical error. On the other handξs is a biased estimator for the functionalJg(f)
with stochastic and truncation errors. The number of iterations can be a random variable when anε-criterion is
used to truncate the Neumann series or the corresponding Markov chain in the MC algorithm.

The stochastic convergence rate is approximatelyO(N−1/2). In order to accelerate the convergence rate of the
MC methods several techniques have been developed. Variance reductions techniques, like antithetic varieties,
stratification and importance sampling [2], reduce the variance which is a quantity to measure the probabilistic
uncertainly. Parallelism is an another way to accelerate the convergence of the MC computations. Ifn processors
executen independent MC computations using non-overlapping randomsequences, the accumulated result has a
variancen time smaller than that of a single copy. In our work we use SPRNG (Scalable Parallel Random Number
Generators) library [5] to produce independent random streams. The numerical results presented in Section 4 are
obtained at the Bulgarian Grid-computing systems that are part of EGEE-GRID [6].

The paper is organized as follows. In Section 2 the quantum-kinetic equation is derived from a physical model
describing electron transport in quantum wires. An integral form of the equation is obtained by reducing the dimen-
sionality of space and momentum coordinates. The MC method and corresponding MC algorithm are presented in
Section 3. The numerical results using Grid implementationare discussed in Section 4. Summary and directions
for future work are given in Section 5.

2. The Physical Model

We consider a highly non-equilibrium electron distribution which propagates in a quantum semiconductor wire.
The electrons, which can be initially injected or opticallygenerated in the wire, begin to interact with three-
dimensional phonons. The direction of the wire is chosen to be z, the corresponding component of the wave
vector iskz. The electrons are in the ground stateΨ(r⊥) in the plane normal to the wire, which is an assumption
consistent at low temperatures. In general, an electric field F can be applied alongz. Here we consider the case
F = 0.

The equation the relevant for the evolution process is derives by a first principle approach in terms of the electron
Wigner functionfw.

fw(z, kz, t) = fw0(z − h̄kz

m t, kz) + (6)

+
∫ t

0
dt′′
∫ t

t′′
dt′
∫

G
d3k′{K1(kz,k

′, t′, t′′)fw (z + h(kz, q
′
z, t, t

′, t′′), k′
z, t

′′)}
+

∫ t

0
dt′′
∫ t

t′′
dt′
∫

G
d3k′{K2(kz,k

′, t′, t′′)fw (z + h(kz, q
′
z, t, t

′, t′′), kz, t
′′)},

where

h(kz, q
′

z, t, t
′, t′′) = − h̄kz

m
(t − t′′) +

h̄q′z
2m

(t′ − t′′) ,

K1(kz,k
′, t′, t′′) = S(k′

z, kz, t
′, t′′,q′

⊥) = −K2(k
′, kz, t

′, t′′),
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S(k′

z, kz, t
′, t′′,q′

⊥) =
2V

(2π)3
|G(q′

⊥)F(q′

⊥, kz − k′

z)|2 ×
[

(n(q′) + 1) cos

(

ǫ(kz) − ǫ(k′
z) + h̄ωq′

h̄
(t′ − t′′)

)

+n(q′) cos

(

ǫ(kz) − ǫ(k′
z) − h̄ωq′

h̄
(t′ − t′′)

)]

where
∫

G
d3k′ =

∫

dq′

⊥

∫ Q2

−Q2

dkz and the domainG is specified in the next section. The phonon distribution
is described by the Bose function,nq′ = 1/(exp(h̄ωq′/KT ) − 1) with K the Boltzmann constant andT is the
temperature of the crystal.h̄ωq′ is the phonon energy which generally depends onq′ = q′

⊥
+q′z = q′

⊥
+(kz−k′

z),
andε(kz) = (h̄2k2

z)/2m is the electron energy. The electron-phonon coupling constantF is chosen according to
a Fr̈ohlich polar optical interaction:

F(q′

⊥, kz − k′

z) = −
[

2πe2ωq′

h̄V

(

1

ε∞

− 1

ε s

)

1

(q′)2

]

1

2

, (7)

(ε∞) and(εs) are the optical and static dielectric constants.G(q′

⊥
) is the Fourier transform of the square of the

ground state wave function|Ψ|2.

The equation describes electron evolution which is quantumin both, the real space due to the confinements of the
wire, and the momentum space due to the early stage of the electron-phonon kinetics. The kinetics resembles the
memory character of the homogeneous Levinson or Barker-Ferry models [7, 8], but the evolution problem becomes
inhomogeneous due to the spatial dependence of the initial conditionfw0. The cross-section of the wire is chosen
to be a square with sidea so that:

|G(q′

⊥)|2 = |G(q′x)G(q′y)|2 =

(

4π2

q′xa ((q′xa)2 − 4π2)

)2

4 sin2(aq′x/2)

(

4π2

q′ya
(

(q′ya)2 − 4π2
)

)2

4 sin2(aq′y/2)

We note that the Neumann series of integral equations of type(6) converges, [9]. Thus, we can construct a MC
estimator to evaluate suitable functionals of the solution.

3. The Monte Carlo Method

The values of the physical quantities are expressed by the following general functional of the solution of (6):

Jg(f) ≡ (g, f) =

∫ T

0

∫

D

g(z, kz, t)fw(z, kz, t)dzdkzdt. (8)

Here we specify that the phase space point(z, kz) belongs to a rectangular domainD = (−Q1, Q1)× (−Q2, Q2),
andt ∈ (0, T ). The functiong(z, kz, t) depends on the quantity of interest. In particular, we focuson the Wigner
function (6), the wave vector (and respectively the energy)f(kz, t), and the density distributionn(z, t). The latter
two functions are given by the integrals

f(kz, t) =

∫

dz

2π
fw(z, kz, t); n(z, t) =

∫

dkz

2π
fw(z, kz, t). (9)

The evaluation is performed in fixed points by choosingg(z, kz, t) as follows:

(i) g(z, kz, t) = δ(z − z0)δ(kz − kz,0)δ(t − t0),

(ii) g(z, kz, t) =
1

2π
δ(kz − kz,0)δ(t − t0), (10)

(iii) g(z, kz, t) =
1

2π
δ(z − z0)δ(t − t0).

We construct a biased MC estimator for evaluating the functional (8) using backward time evolution of the numer-
ical trajectories in the following way:

ξs[Jg(f)] =
g(z, kz, t)

pin(z, kz, t)
W0fw(., kz, 0) +

g(z, kz, t)

pin(z, kz, t)

s
∑

j=1

Wα
j fw

(

., kα
z,j , tj

)

, (11)
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where

fw

(

., kα
z,j , tj

)

=

{

fw

(

z + h(kz,j−1, q
′
z,j , tj−1, t

′
j , tj), kz,j , tj

)

, if α = 1,
fw

(

z + h(kz,j−1, q
′
z,j , tj−1, t

′
j , tj), kz,j−1, tj

)

, if α = 2,

Wα
j = Wα

j−1

Kα(kzj−1,kj , t
′
j , tj)

pαptr(kj−1,kj , t′j , tj)
, Wα

0 = W0 = 1, α = 1, 2, j = 1, . . . , s .

The probabilitiespα, (α = 1, 2) are chosen to be proportional to the absolute value of the kernels in (6). The
initial density pin(z, kz, t) and the transition densityptr(k,k′, t′, t′′) are chosen to be tolerant1 to the given
function g(z, kz, t) and the kernels, respectively. The first point(z, kz0, t0) in the Markov chain is chosen us-
ing the initial density, wherekz0 is the third coordinate of the wave vectork0. Next points(kzj , t

′
j , tj) ∈

(−Q2, Q2) × (tj , tj−1) × (0, tj−1) of the Markov chain:

(kz0, t0) → (kz1, t
′

1, t1) → . . . → (kzj , t
′

j , tj) → . . . → (kzs, , t
′

s, ts), j = 1, 2, . . . , s

do not depend on the positionz of the electrons. They are sampled using the transition density ptr(k,k′, t′, t′′) as
we take only thekz-coordinate of the wave vectork. Note the timet′j conditionally depends on the selected time
tj . The Markov chain terminates in timets < ε1, whereε1 is a fixed small positive number called a truncation
parameter. In order to evaluate the functional (8) byN independent samples of the estimator (11), we define a
Monte Carlo method

1

N

N
∑

i=1

(ξs[Jg(f)])i
P−→ Jg(f

(s)) ≈ Jg(f). (12)

f (s) is the iterative solution obtained by the Neumann series of (6), ands is the number of iterations. In order
to obtain a MC computational algorithm, we have to specify the initial and transition densities. Also, we have to
describe the sampling rule needed to calculate the states ofthe Markov chain by using SPRNG library.

We note the MC estimator is constructed using the kernels of the equation (6). That is why we suggest the tran-
sition density function to be proportional of the term (7) that contains the singularity, namely:ptr(k,k′, t′, t′′) =
p(k′/k)p(t, t′, t′′), where

p(t, t′, t′′) = p(t, t′′)p(t′/t′′) =
1

t

1

(t − t′′)
, p(k′/k) = c1/(k′ − k)2.

c1 is the normalized constant. Thus, if we knowt, the next timest′′ andt′ are computed by using the inverse-
transformation rule. The functionp(k′/k) is chosen in spherical coordinates(ρ, θ, ϕ), in the following way:
p(k′/k) = (4π)−1(ρ)−2l(ω)−1, whereω = (k′ − k)/ρ, ρ = |k′ − k| andl(ω) is distance in the direction of
the unit vectorω from k to the boundary of the domainG. If G is a sphere with radiusQ2, the functionp(k′/k)
satisfies the condition for a transition density. Indeed,

∫

G

p(k′/k)d3k′ =

∮

(4π)−1dω

∫ l(ω)

0

l(ω)−1dr′ = 1.

Thus, if we know the wave vectork the next statek′ can be computed by the following sample rule:

Algorithm :

1. Sample a random unit vectorω = (sin θ cos ϕ, sin θ sinϕ, cos θ) assin θ = 2
√

(β1 − β2
1), cos θ = 2β1−1,

andϕ = 2πβ2 whereβ1 andbeta2 are uniformly distributed numbers in(0, 1);

2. Calculate l(ω) = −ω ·k+(Q2
2 +(ω ·k)2 −k2)

1

2 , whereω ·k means a scalar product between two vectors;

3. Sample ρ = l(ω)β3, whereβ3 is an uniformly distributed number in(0, 1);

4. Calculate k′ = k + ρω.

The choice ofpin(z, kz, t) depends on the choice of the functiong(z, kz, t) in (10). Thus, by using common
Markov chains the desired physical quantities (values of the Wigner function, the energy and the density distribu-
tions) can be evaluated simultaneously.

1r(x) is tolerant ofg(x) if r(x) > 0 wheng(x) 6= 0 andr(x) ≥ 0 wheng(x) = 0.
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Figure 1: The users submit their jobs usingUser Interface(UI) to Resource Broker(RB).
TheComputing Element(CE) receives the jobs and controls their execution on theWorker
Nodes(WNs).

4. Grid implementation and numerical results

The stochastic error for the (homogeneous) Levinson or Barker-Ferry models has orderO(exp (c2t) N−1/2), where
t is the evolution time andc2 is a constant depending on the kernels of the obtained quantum kinetic equation [9,
10]. Using the same mathematical techniques as in [9], we canprove that the stochastic error of the MC estimator
under consideration has orderO(exp

(

c3t
2
)

N−1/2). We obtain the termt2 in the factorexp
(

c3t
2
)

because the
quantum kinetic equation (6) contained twice integration on the evolution time. Thus, in our inhomogeneous case
the estimate is worse than in the homogeneous one. The estimate shows that whent is fixed andN → ∞ the
error decreases, but for larget the factorexp

(

c3t
2
)

looks ominous. Therefore, the MC algorithm described above
solves anNP -hard problem concerning the evolution time. The suggestedimportance sampling technique, which
overcomes the singularity in the kernels, is not enough to solve the problem for long evolution time with small
stochastic error. In order to decrease the stochastic errorwe have to increaseN - the number of Markov chain
realizations. For this aim, a lot of CPU power is needed for achieving acceptable accuracy at evolution times above
100 femtoseconds.

It is known that the MC algorithms are perceived as computationally intensive and naturally parallel [11]. They
can usually be implemented via the so-called dynamicbag-of-workmodel [12]. In this model, a large MC task is
split into smaller independent subtasks, which are then executed separately. Then, the partial results are collected
and used to assemble an accumulated result with smaller variance than that of a single copy. The inherent char-
acteristics of MC algorithms and the dynamicbag-of-workmodel make them a natural fit for the Grid-computing
environment.

By using the Grid environment provided by EGEE project middleware2, we were able to reduce the computing
time of the MC algorithm under consideration. The simulations of the Markov chain are parallelized on the Grid by
splitting the underlying random number sequences from the SPRNG library. We divided the MC task into a number
of subtasks and submitted them to the EGEE [6] computationalgrid by the task-split serviceand utilized the
grid’s Workload Management Service(called alsoResource Broker(RB) in EGEE) to dispatch these independent
subtasks to different nodes among EGEE sites (computer clusters) (see Figure 1). Theconnectivity servicesare

2The Enabling Grids for E-sciencE (EGEE) project is funded bythe European Commission and aims to build on recent advances in grid
technology and develop a service grid infrastructure whichis available to scientists 24 hours-a-day. The project aims to provide researchers in
both academia and industry with access to major computing resources, independent of their geographic location. The EGEE project identifies
a wide-range of scientific disciplines and their applications and supports a number of them for deployment. To date there are five different
scientific applications running on the EGEE Grid infrastructure. For more information see http://public.eu-egee.org/.
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Figure 2: The Wigner function solution at150fs presented in the planez × kz. A window
in thez domain is chosen for a better resolution.

provided using thegridftp protocol. The execution of a subtask takes advantage of theStorage Elementsto store the
executable, intermediate results, and to store each subtask’s final (partial) result. When the subtasks are done, the
RB andLogging and Bookkeeping Serviceare used to collect the information about the results, and then thetask-
gathering servicegets the results of the successfully executed subtasks. Thetask-split serviceandtask-gathering
servicehave been prepared by using the SQL language. In our research, the MC algorithm has been implemented
in C language. Successful tests of the algorithm were performedat the Bulgarian EGEE Grid sites using the
Resource Broker at BG01-IPP Grid site. The BG01-IPP Grid site was also used for the computations, because
it has 21 Worker Nodes with 2.8 GHz Pentium IV CPUs. The MPI implementation was MPICH 1.2.6, and the
execution is controlled from the Computing Element via the Torque batch system.

The numerical results presented in Figures 2-4 are obtainedfor zero temperature and GaAs material parameters:
the electron effective mass is 0.063, the optimal phonon energy is 36 meV, the static and optical dielectric constants
areεs = 12.9 andε∞ = 10.92. The initial condition is a product of two Gaussian distributions of the energy and
space. Thek2

z distribution corresponds to a generating laser pulse with an excess energy of about 150 meV. Thez
distribution is centered around zero. The side of the wire ischosen to be10 nanometers.

The solutions of the Wigner functionf(z, kz, t) are estimated in a rectangular domain(−Q1.Q1) × (−Q2, Q2),
whereQ1 = 400 nm andQ2 = 0.66nm−1 consisting of800 × 260 points. The solution for150 femtoseconds
evolution time is shown in Figure 2. Figure 3 demonstrates the process of energy relaxation described by the
quantitykzf(kz, t). The electron density distribution along the wire is shown on Figure 4 for150 femtoseconds
evolution time.

The timing results for evolution timet = 100 femtoseconds are shown in Table 1. The parallel efficiency isclose
to 100%.
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Figure 3: Energy relaxation of the highly non-equilibrium initial condition. At T = 0
classical electrons form exact replicas of the initial condition towards low energies. The
quantum solution shows broadening of the replicas. Electrons appear in the classically for-
bidden region above the initial condition. Here the variance of the solution for 175 fs is still
high with respect to the solutions for shorter times, obtained with the same computational
efforts.

5. Conclusion

A quantum-kinetic model for the evolution of an initial electron distribution in a quantum wire has been intro-
duced in terms of the electron Wigner function. The physicalquantities, expressed as functionals of the Wigner
function are evaluated within a stochastic approach. The developed MC method is characterized by the typical for
quantum algorithms computational demands. The stochasticvariance grows exponentially with the evolution time
and requires implementation of GRID technologies. The EGEEGrid environment has been used to test the MC
algorithm on MPI-enabled Grid sites. The test results show excellent parallel efficiency. The next phase of our
research will be to obtain results for larger evolution times that require more computational power. This means
that the MC algorithm should run on larger sites or on severalGrid sites in parallel. Also, the modeling of electron
transport in a quantum wire should be investigated in case ofan applied electric field.
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Table 1: The CPU time (seconds) for all800× 260 points, the speed-up,
and the parallel efficiency. The number of the Markov chain simulations
is N = 100000. The evolution time is 100 fs.

Number of CPUs CPU Time (s) Speed-up Parallel Efficiency

2 9790 - -

4 4896 1.9996 0.9998

6 3265 2.9985 0.9995
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Figure 4: Electron density along the wire after 150 fs. The ballistic curve outlines the
largest distance which can be reached by classical electrons. The quantum solution reaches
larger distances due to the electrons scattered in the classically forbidden energy region.
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